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ABSTRACT
Cell cultures as well as cells in tissue always display a certain
degree of variability, and measurements based on cell aver-
ages will miss important information contained in a heteroge-
neous population. This paper presents automated methods for
segmentation of cells and cytoplasms. The segmentation re-
sults are applied to image based measurements of mitochondi-
ral DNA (mtDNA) mutations in individual cells. Three dif-
ferent methods for segmentation of cytoplasms are compared
and it is shown that automated cytoplasmic delineation can
be performed 30 times faster than manual delineation, with
an accuracy as high as 87%, compared to an inter observer
variability of 79% at manual delineation.

1. INTRODUCTION

Great improvements in microscopy hardware have made it
possible to produce thousands of high resolution cell images
in a short period of time. It has led to a great demand for
high-throughput automated cell image analysis. Image based
analysis of microscopy data and cell segmentation is not new.
The interest for high- throughput image based techniques is
however growing fast. An image of a cell culture often con-
tains different cells that all possess different characteristics.
Taking the average over such an image will not reveal the bi-
ologically important differences and variations between the
cells. Single cell analysis is clearly the only option to ob-
serve the dissimilarities between the cells. To be able to as-
sign a signal to a particular cell it has to be delineated. A
common approach is to use a cytoplasm staining as a guide
in delineation of the cell at its cytoplasmic borders [5, 10].
Another approach is to use a membrane stain, which binds to
the cytoplasmic surface. In combination with nuclear stain-
ing individual cells can then be delineated by a combination

This project was funded by the EU-Strep project ENLIGHT (ENhanced
LIGase based Histochemical Techniques). The authors would also like to
thank Chatarina Larsson and Mats Nilsson at the Department of Genetics
and Pathology, Uppsala University, Sweden, for advice and help with the
padlock probing techniques, George Janssen and Marchien vand de Sande at
the Department of Molecular Cell Biology of the Leiden University Medicine
Center for their intellectulal and experimental contributions in segeregation
analysis, and the staff at Visiopharm, Hørsholm, Denmark, for help with in-
tegration of new functionality in VIS.

of gradient curvature flow techniques and seeded watershed
segmentation [6]. In many studies a blue stain is used for the
nucleus, and red and green stain for molecular detection. Due
to fluorescence spectral overlap this may limit the possibility
of using a unique color for a stain that helps segmenting the
cytoplasm. Also, a cytoplasmic stain may not be compatible
with the molecular stain of interest.

Mitochondrial DNA (mtDNA) is a small genome, present
in 100s to 1000s of copies in the cytoplasm of each mam-
malian cell. The genetic information contained in the human
mtDNA is essential for a major energy-generating process
of the cell called oxidative phosphorylation. All DNA mu-
tates and so does mtDNA. When the mutation is pathogenic
it needs to accumulate to relative large amounts (>80% of all
mtDNAs) for the cells energy provision to become so sub-
verted that cell functions are lost and cells die. Such mutation
accumulation leads to devastating diseases if the mutation is
inherited from the mother or to normal aging phenomena if
it is acquired somatically. A major factor in determining cel-
lular mutation loads is the process of mitotic segregation. To
understand mtDNA segregation and with it mtDNA mutation
accumulation, our research focuses on mtDNA segregation
patterns in in vitro cultured cells. Experimentally, this re-
quires the determination of the mutation load in hundreds of
individual cells in multiple serial cell culture passages of a
cloned heteroplasmic founder cell (i.e., a single cell carrying
mutant and wildtype-mtDNA molecules). In situ genotyping
mtDNA with the padlock/rolling circle method [4] provides
an elegant approach for detection of mtDNA sequences vari-
ants at the (sub-) cellular level. However, in our experience
thusfar no cytoplasmic or membrane staining proved compat-
ible with the padlock/rolling circle method. One way to ap-
proximate the outline of the cytoplasm is using a fixed radius
for each cell [2]. A fixed radius may not always be the best
choice since cells are often not spherical. Thus, to analyze
thousands of cells, the challenge is to develop for this appli-
cation a cell segmentation in absence of a cytoplasmic stain.
Here we describe development of such an automated image
cytometric procedure for fully automated measurements of
mtDNA mutation loads of single cells. Preliminary results
show that it greatly facilitates the determination of the mutant
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Fig. 1. A: Nuclear stain. B: Final segmentation result.

mtDNA fraction of heteroplasmic cells stained for the wild-
type and mutant locus at position 3243 of human mtDNA.

2. MATERIALS AND METHODS

2.1. Cell preparation and image acquisition

The nuclei are stained with DAPI (blue). Padlock probes
for mutated mtDNA are detected with Cy5 stain (red) and
padlock probes for wild-type DNA are detected with FITC
stain (green). For visualization of the cytoplasm tubulin is
detected with mouse anti-tubulin antibodies and two differ-
ent secondary antibodies, rabbit anti-mouse FITC (green) and
goat anti-mouse Alexa 594 (red). Cytoplasmic stains can not
be used together with padlock probes detected with the same
color due to spectral overlap. Images are acquired using an
epiflourescent microscope (Leica, Leica Microsystems GmbH,
Wetzlar, Germany) equipped with a cooled monochrome CCD
camera (Quantix, Photometrix, Melbourne, Australia).

2.2. Delineation of nuclei

The cell segmentation is initiated by a segmentation of the im-
age channel representing the nuclear stain (Fig. 1A). Otsu‘s
method of thresholding, which minimizes the variance of the
foreground and the background, separates the nuclei from the
background [7]. The binary image representing the nuclei is
transformed to a landscape-like image using distance trans-
formation. The distance image is produced using the 5-7-
11-chamfer distance transform on the binary image [1]. The
chamfer distance transform was preferred over the Euclidian
distance transform due to lower computational cost and yet
sufficient result. Clustered nuclei are thereafter separated by
watershed segmentation [3].

Seeds that represent the different nuclei are needed in or-
der to separate clustered nuclei into different objects. Due
to imperfect circularity of the nuclei distance transform may
lead to multiple seeding points or local maxima, for the same
nucleus. This will result in over-segmentation. The h-maxima
transform is used to suppress maxima whose depth is smaller
than a given threshold t[8]. The value t is directly propor-
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Fig. 2. A: Result of cytoplasmic segmentation not making use of the cyto-
plasmic stain (NCS). B: Result when cytoplasmic stain is included (CS). C:
Result of manual delineation (O).

tional to the radius of an object and can therefore also be used
to remove objects that are too small to be true cell nuclei, and
thus have a radius less than a specified value. The result of
the watershed segmentation is shown in Fig. 1B.

2.3. Delineation of cytoplasms

Once the nuclei have been delineated, a cytoplasm has to be
defined for each detected nucelus.

Approach 1: no cytoplasmic stain (NCS). If no cyto-
plasm staining is present the delineation of the cytoplasm is
purely based on a fixed distances from the border of the nu-
cleus. A distance transform is applied to the background of
the binary image of the nuclei. This results in an image that
represents the distance to the nearest nuclei for each pixel. A
user defined threshold, corresponding to the maximum radius
of the cytoplasm, is applied to the distance transformed back-
ground. A watershed is again used to define the borders of the
objects, see result in Fig. 2A.

Approach 2: with cytoplasmic stain (CS). The second
approach to delineation of the cytoplasm makes use of a cyto-
plasm staining (tubulin stain). Tubulin is present throughout
the whole cytoplasm and can therefore be used as a marker
for the cytoplasm. A variance filter is applied to the chan-
nel representing the tubulin and areas of high intensity vari-
ation (tubulin areas) are enhanced. Thereafter, an average
filter is applied to smooth the variance. The smoothed im-
age is thresholded by Otsu‘s method, but to include all of
the cytoplasm the threshold is adjusted by multiplying it with
0.25. This may be avoided by using a different thresholding
method. A watershed transformation seeded by the nuclei and
restricted to the binary image of the cytoplasm is there after
applied, see result in Fig. 2B.

Approach 3: manual delineation (O). The third method
for delineation of the cytoplasm is a manual segmentation.
Here, two observers used the software Visiopharm Integra-
tor System (VIS, Visiopharm, Hørsholm, Denmark) to outline
the tubulin stained images manually.



2.4. Localization of padlock signals

The image channels containing the padlock signals represent-
ing wild-type or mutant mt DNA are filtered with a 5x5 kernel
that enhances areas of local maxima. The signals are sepa-
rated from the image background by a user defined threshold
set to a default value that localizes the major proportion of
the signals. The same threshold was used for all images, and
in order to evaluate the influence of the threshold on the fi-
nal measure of mutation load the thresholds were increased
or decrease by 20%. The variation caused by these changes is
shown as error bars in Fig. 3.

2.5. Comparison of segmentation methods

In the evaluation of the different methods for cytoplasm seg-
mentation, accuracy (agreement with truth), precision (repro-
ducibility) and efficiency (time) are considered, based on the
ideas by Udupa et. al. [9]. Define S as being the result of
the segmentation method being compared to St, the true seg-
mentation. The accuracy makes use of three definitions; False
Negative Area Fraction (FNAF), False Positive Area Fraction
(FPAF) and True Positive Area Fraction (TPAF). FNAF is the
fraction of St that was missed by S. FPAF denotes the area that
is falsely identified by S as a fraction St. In the current case,
the parts of the S that overlap with the image background, as
defined by St, are not counted as falsely identified because
the background does not give rise to any signals and will not
affect the calculation of signals per cell. TPAF describes the
total amount of cytoplasm defined by S that coincides with St

as a fraction of St.
Precision is the ability to reproduce the same result. Nat-

urally, a fully automated method will always reproduce the
same result when applied to the same image. To observe true
precision, the cells should be imaged repeatedly. This was
however not done. At manual delineation, the result will most
likely not be fully reproducible, we will have inter- and intra-
observer variation.

Two factors must be considered when comparing the effi-
ciency of a segmentation method; the computational time and
the human operator time required to complete the segmenta-
tion.

3. RESULTS

3.1. Comparison of segmentation methods

For a full comparison of segmentation methods, accuracy,
precision, and efficiency should be considered. The com-
parative study of methods for cytoplasm segmentation was
performed on 9 images containing a total of 56 cells. Two
fully automated image based segmentation methods, one us-
ing information from a cytoplasmic stain (referred to CS), and
which does not make use of a cytoplasmic stain (referred to

Table 1. Comparison of Accuracy

Method vs. Accuracy
TPAF FNAF FPAF

NCS O1a 0.87±0.03 0.14±0.03 0.12±0.04
CS O1a 0.85±0.03 0.16±0.03 0.11±0.03
O2 O1a 0.84±0.02 0.16±0.02 0.02±0.01
O1b O1a 0.90±0.02 0.10±0.02 0.03±0.01

Table 2. Comparison of Precision and Efficiency

Method vs. Precision Efficiency
(%) Cells/min

NCS O1a 100 30
CS O1a 100 30
O2 O1a 79 1
O1b O1a 84 1

as NCS) were compared to each other and to manual segmen-
tation (referred to as O) of the same cytoplasms. Both auto-
mated methods are seeded by the same image of the cell nu-
clei, and the same threshold t for the h-maxima transform (the
only input parameter) was used in all images. As no gold stan-
dard or ground truth is possible to produce, it is assumed that
the manual segmentation method (O) results in the true delin-
eation, defined as SO

t . Manual segmentation was performed
three times by two different persons to provide measurements
of precision (reproducibility) in terms of inter- and intra- ob-
server variability (refered to as O1a, O1b and O2). The results
can be seen in Table 1 and 2.

First of all, considering the accuracy, NCS and CS is sig-
nificantly (α=0.05) less accurate than O. Between CS and
NCS no significant (α= 0.05) difference can be seen in terms
of accuracy. Furthermore, method O has noticeably lower
precision than the other methods, as the computer based meth-
ods will reproduce the same result if re-run on the same image
data, i.e., 100% precision, while manual segmentation varies
both between observers (inter-observer precision is 79%) and
for the same observer assessing the data at different times
(intra-observer precision is 84%). Finally, the efficiency of
NCS and CS is approximately 30 times higher than that of the
manual segmentation O when using a 2.53 GHz Intel Pentium
4 processor.

3.2. Validation of image based measurements

Mutation load is the proportion of mutated mtDNA (number
of red padlock signals) compared to wild type mtDNA (num-
ber of green padlock signals) per cell. The image based analy-
sis was first performed on a padlock probed co-culture, mean-
ing that cells with 100% wild type mtDNA were mixed and



Fig. 3. Histogram of proportion of cell population against mutation load as
achieved by image based measures. Error bars show variation caused when
varying the threshold for signal detection.

cultured together with cells having 100% mutated mtDNA.
This data set consisted of 29 images containing a total of
178 cells. A histogram of mutation load per cell measured
from image data is shown in Fig. 3. The data from the co-
culture shows distinct distributions at the extremes, i.e., cells
with 100% and 0% mutation load. The automated analysis
performed very well considering hardly any intermediate lev-
els were found. A large amount of intermediate levels would
have been an indication of a high degree of error in the anal-
ysis method. Second, an analysis of a padlock probed culture
(G55) of cells with a ∼50% mtDNA mutation load was made
on 66 cells in 10 images. As predicted, the analysis from G55
has a clear peak close to 50% mutation load.

4. CONCLUSIONS

Comparison of methods for cytoplasmic segmentation show
that presence of a cytoplasmic stain does not result in a sig-
nificant increase in accuracy. This may seem strange as a cy-
toplasmic stain will guide the segmentation mask to the true
edges of the cytoplasm. However, in the presented analysis,
inclusion of parts of the image background does not affect
the measurement of mutation load, as no signals are present
in the background. Therefore, we have chosen not to count
the inclusion of background as part of the false positive area
fraction (FPAF). For other applications, e.g., if cytoplasmic
area is to be measured, a segmentation method making use of
the information from a cytoplasmic stain may be necessary.
It is also worth mentioning that the agreement between man-
ual cytoplasm segmentation and either of the fully automated
methods is about the same as the agreement between manual
cytoplasm segmentation performed by two different persons.

The automated method not including a cytoplasmic stain
turned out to be a sufficiently accurate and fast method for
analysis of single cell mutation load. The fact that no cyto-
plsmic stain was included also allows the use of two different

colors for mutant and wild type mtDNA without problems
with overlapping fluorescence spectra.

In combination with automated image acquisition and batch
processing of image files, the presented methods opens the
possibility of high-throughput analysis of large numbers of
cells with little human interaction or observer bias. This is
also the next step to take within this project.
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