Digital Image Processing Lecture, parts

- Color
- Gonzales \& Woods:
- Chapter 6

Maria Magnusson, Computer Vision Lab., Dept. of Electrical Engineering, Linköping University
Color spectrum

Fig. 6.1

In 1666, Newton discovered that sunlight (white light) passing through a glass prism split up into a color spectrum of wave lengths in the interval $400-700 \mathrm{~nm}$.

Characteristics of a light source

- 1) Radiance
- Total amount of energy that flows from the light source.
- Measured in watts (W).
- 2) Luminance
- A measure of the amount of energy the observer perceives from a light source.
- Measured in lumens (Im).
- Ex 1) Normally high Radiance corresponds to high Luminance.
- Ex 2) High Radiance of infrared light correspond to low Luminance
- 3) Brightness
- Embodies the achromatic notion of intensity
- Impossible to measure
- Ex) Which color is most intense - blue or red?

Absorption of light by

Primary and secondary colors of ${ }^{\text {p. } 6}$
light. Additive color mixing.

Answer to which wavelength magenta has.

Here, secondary colors are mixtures of two primary colors.
yellow $=$ red + green
cyan $=$ green + blue
magenta $=$ red + blue
CRT
LCD
plasma

Primary and secondary colors of pigments. Subtractive color mixing.

A primary color of
pigment absorbs
1 primary color of light
and reflects the
others.

red = yellow + magenta green $=$ cyan + yellow blue $=$ magenta + cyan

[^0]
Characteristics of a color

- 1) Brightness
- Embodies the achromatic notion of intensity
- Impossible to measure
- 2) Hue
- Associated with the dominant wavelength in a mixture of light waves
- Dominant color as perceived by an observer
- 3) Saturation
- Refers to the relative purity or the amount of white light mixed with a hue
- The pure spectrum colors are fully saturated
- Chromaticity
- Hue and saturation taken together
- A color may be characterized by its brightness and chromaticity - Tristimulus
- The amount of X ("red"), Y ("green") and Z ("blue") needed to form a particular color.
- Do not exist in reality. Compiled from extensive experimental results with humans.

CIE Chromaticity diagram

Trichomatic
coefficients :
$x=\frac{X}{X+Y+Z}$
$y=\frac{Y}{X+Y+Z}$
$z=\frac{Z}{X+Y+Z}$
$x+y+z=1$
Useful for mixing colors because a straight line between two colors gives the additive mixing result color.

Typical color gamut of color monitors and color printing devices

The colors

 inside thistriangle can be composed by a typical RGB color monitor.

Basics of full-color image processing

-1) We can process each color component individually and then form a composite processed color image from the individually processed components.

- 2) We can work with color pixels directly.
$\mathbf{c}(x, y)=\left[\begin{array}{l}c_{R}(x, y) \\ c_{G}(x, y) \\ c_{B}(x, y)\end{array}\right]=\left[\begin{array}{l}R(x, y) \\ G(x, y) \\ B(x, y)\end{array}\right]$

Tone and color corrections

Conversion from color to gray scale in MATLAB

GrayV $=0.2989 \cdot R+0.5870 \cdot G+0.1140 \cdot B$ (MatLab: rgb2gray)

[^0]: Painting colors
 Clay

