Digital Image Processing Lecture, parts

Color

□ Gonzales & Woods:

Chapter 6

Maria Magnusson, Computer Vision Lab., Dept. of Electrical Engineering, Linköping University

Color of objects

An object that reflects light in all wave lengths appears white.

An object that reflects blue light and absorbs greenyellowred light appears blue.

Color spectrum Color wavelength

p. 2 Which wavelength has magenta (cerise)?

p. 4

Characteristics of a light source

- 1) Radiance
 - Total amount of energy that flows from the light source.
 - Measured in watts (W).
- 2) Luminance
 - A measure of the amount of energy the observer *perceives* from a light source.
 - Measured in lumens (Im).
 - Ex 1) Normally high Radiance corresponds to high Luminance.
 - Ex 2) High Radiance of infrared light correspond to low Luminance
- 3) Brightness
 - Embodies the achromatic notion of intensity
 - Impossible to measure
 - Ex) Which color is most intense blue or red?

p. 1

Absorption of light by the cones in the human eye

Primary and secondary colors of ^{P.6} light. Additive color mixing.

Here, secondary colors are mixtures of two primary colors. yellow = red + green cyan = green + blue magenta = red + blue

CRT LCD plasma

Fig. 6.4

p. 8

Primary and secondary colors of pigments. Subtractive color mixing.

A primary color of pigment absorbs 1 primary color of light and reflects the others.

p. 5

p. 7

Fig. 6.3

red = yellow + magentagreen = cyan + yellow blue = magenta + cyan

Painting colors Clay

Color printing is a mixture of additive and subtractive color mixing

Fig. 6.4

Characteristics of a color

- 1) Brightness
 - Embodies the achromatic notion of intensity
 - Impossible to measure
- 2) Hue
 - Associated with the dominant wavelength in a mixture of light waves
 - Dominant color as perceived by an observer
- 3) Saturation
 - Refers to the relative purity or the amount of white light mixed with a hue
 - The pure spectrum colors are fully saturated
- Chromaticity
 - Hue and saturation taken together
 - A color may be characterized by its brightness and chromaticity
- Tristimulus
 - The amount of X ("red"), Y ("green") and Z ("blue") needed to form a particular color.
 - Do not exist in reality. Compiled from extensive experimental results with humans.

because a straight line between two colors gives the additive mixing result color.

p. 10 Typical color gamut of color monitors and color printing devices

Question:Intensity to color transformation 444 Construct a color transformation so that an IR-image is shown in gray scale up to 99. Then, the values are shown in a linear yellow-to-red scale from saturated yellow to saturated red

Intensity	R	G	В
0:			
1			
98:			
99:			
100:			
255:			

p. 12

p. 9

Basics of full-color image processing

- 1) We can process each color component individually and then form a composite processed color image from the individually processed components.
- **2**) We can work with color pixels directly.

Conversion from color to gray scale in MATLAB

GrayV = $0.2989 \cdot R + 0.5870 \cdot G + 0.1140 \cdot B$ (MatLab: rgb2gray)

Answer: Intensity to color transformation

Construct a color transformation so that an IR-image is shown in gray scale up to 99. Then, the values are shown in a linear yellow-to-red scale from saturated yellow to saturated red.

Intensity	R	G	В
0:	0	0	0
 08-			
90. 99:	98 99	98 99	90 99
100:	255	255	0
Ι	I	I	
255:	255	0	0

p. 13

p. 15