Tutorial overview

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30-2:00pm</td>
<td>Introduction</td>
<td>Per-Erik</td>
</tr>
<tr>
<td>2:00-2:15pm</td>
<td>Rolling Shutter Geometry</td>
<td>Per-Erik</td>
</tr>
<tr>
<td>2:15-3:00pm</td>
<td>Rectification and Stabilisation</td>
<td>Erik</td>
</tr>
<tr>
<td>3:00-3:30pm</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>3:30-3:45pm</td>
<td>Rolling Shutter and the Kinect</td>
<td>Erik</td>
</tr>
<tr>
<td>3:45-4:30pm</td>
<td>Structure from Motion</td>
<td>Johan</td>
</tr>
</tbody>
</table>
The Kinect sensor

- Designed for player interaction with the Xbox 360
- "You are the Controller"
- 3D scanner
- Accelerometer sensor
- Skeletal tracking

- Stationary in your living room
The Kinect sensor

- The H/W gained popularity in the research community
- Quasi-dense depth maps in 30 Hz
- Cheap (~100 USD)
The Kinect sensor

- Range estimation by triangulation

- A - structured NIR laser projector
- B - CMOS Colour camera
- C - CMOS NIR camera
RS on Kinect

● Both Kinect cameras make use of rolling shutters

● Not a big problem when it is used for gaming:
 ● Stationary in your living room
 ● People are moving quite slowly far away from the sensor

● It is however also popular to use the Kinect sensor on mobile platforms
 → RS problems
Kinect footage
Kinect footage

Augmented reality by KinectFusion

[Izadi et al. SIGGRAPH’11]
RS on Kinect

- A similar approach as for the video case, but now we also have the depth.
- 3D point correspondences enables us to estimate the full 3D motion (rotation and translation).
- The 3D point cloud can be rectified.

[Ringaby & Forssén, ICCV’11]
Synchronization problem

- RGB and depth map:
 - Different readout time
 - Different fields-of-view
 - Correspondence problematic under camera motion
Synchronization problem

- RGB and depth map:
 - Different readout time
 - Different fields-of-view
 - Correspondence problematic under camera motion

Solution:
Use NIR images
NIR images

- NIR and depth map from the same sensor
- NIR camera uses shorter shutter speeds, less motion blur
- Drawback, we need to suppress the structured light pattern (SLP)
Suppressing the SLP

Source code available at: http://users.isy.liu.se/cvl/perfo/software/
Outlier rejection

- Optimisation sensitive to point corr. outliers

- Three rejection steps:
 - KLT cross-checking
 - Depth map edge detection
 - Procrustes RANSAC
Depth map edge detection
Kinect depth map is noisy

Estimate global translation and rotation between point clouds with Procrustes alg. [Viklands06] (RANSAC)

When finished, reject those point correspondences which are above a threshold
Point correspondences
Sensor Geometry

A 3D point X relates to its corresponding homogenous image point x as:

$$x = KX, \text{ and } X = z(x)K^{-1}x$$

where K is the intrinsic camera matrix and $z(x)$ is the point’s value in the depth image.

We model the camera motion as a seq. of rotation matrices $R(t)$ and translation vectors $d(t)$.
Sensor motion estimation

A point in image 1, at row N_x corr. to 3D point X_1 and

A point in image 2, at row N_y corr. to 3D point X_2.

They can be transformed to X_0:

\[X_0 = R(N_1)X_1 + d(N_1) \]
\[X_0 = R(N_2)X_2 + d(N_2) \]

X_0 is the position the point should have, if it was imaged the same time as the first row in image 1.
Sensor motion estimation

We use this cost function to solve for the rotation and translation:

\[
J = \sum_{k=1}^{K} \left\| \mathbf{R}(N_1,k)\mathbf{X}_{1,k} + \mathbf{d}(N_1,k) - \mathbf{R}(N_2,k)\mathbf{X}_{2,k} - \mathbf{d}(N_2,k) \right\|^2
\]

where \(K \) is the number of point corr.

- 12 unknowns, 3 equations per point corr.
- \(\mathbf{R} \) "key-rotations" as before, and \(\mathbf{d} \) "key-translations"
Sensor motion estimation

"Key-rotations" and "key-translations"

- SLERP for rotations and
- Linear interpolation for translations
Rectification

When the camera motion has been estimated the 3D point clouds can be rectified with

\[X' = R_{\text{ref}}(R(N_1)X_1 + d(N_1)) + d_{\text{ref}} \]

By projecting the points through the camera, depth map and video frames can also be rectified:

\[x' = K[R_{\text{ref}}(R(N_1)X_1 + d(N_1)) + d_{\text{ref}}] \]
Rectification

Original

Rectified
Rectification
Summary

- When the Kinect is used on a mobile platform rolling-shutter distortions will be present.

- Using correspondences in the NIR images avoids depth-to-image registration problem.

- Depth map noisy, optimisation in 3D more sensitive than “video approach”.

- Full 6-DOF motion can be estimated and corrected for.
References

- Ringaby, Forssén, “Scan Rectification for Structured Light Range Sensors with Rolling Shutters”, ICCV’11

- Izadi et-al “KinectFusion: Real-Time Dynamic 3D Surface Reconstruction and Interaction”, SIGGRAPH’11