TSBB15 Computer Vision

Lecture 3
The structure tensor

Estimation of local orientation

• A very simple description of local orientation at image point $\mathbf{p} = (u,v)$ is given by:

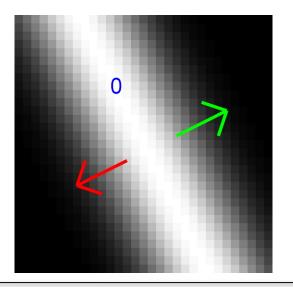
$$\hat{\mathbf{n}} = \pm \frac{\nabla I}{\|\nabla I\|}$$

• Here, ∇I is the gradient at point \mathbf{p} of the image intensity I. In practice:

$$\nabla I = \begin{pmatrix} \frac{\partial}{\partial u} \\ \frac{\partial}{\partial v} \end{pmatrix} (w_1 * I)$$

Estimation of local orientation

- **Problem 1:** ∇I may be zero, even though there is a well defined orientation.
- **Problem 2:** The sign of ∇I changes across a line.



Estimation of local orientation

- Partial solution:
- Form the outer product of the gradient with itself: $\nabla I \nabla^T I$.
- This is a symmetric 2 × 2 matrix (tensor)
- Problem 2 solved!
- Also: The representation is unambiguous
 - Distinct orientations are mapped to distinct matrices
 - Similar orientations are mapped to similar matrices
 - Continuity / compatibility
- Problem 1 remains

The structure tensor

 Compute a local average of the outer product of the gradients around the point p:

$$\mathbf{T}(\mathbf{p}) = \int w_2(\mathbf{x}) [\nabla I](\mathbf{x}) [\nabla^T I](\mathbf{x}) d\mathbf{x}$$

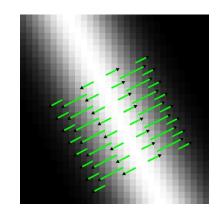
- Here, x represent an offset from p
- $w_2(\mathbf{x})$ is some LP-filter (typically a Gaussian)
- **T** is a symmetric 2×2 matrix: $T_{ij} = T_{ji}$
- This construction is called the structure tensor
- Solves also problem 1 (why?)
- **T** is computed for each point **p** in the image

Orientation representation

- For a signal that is approximately i1D in the neighborhood of a point p, with orientation ±n:
 ∇I is always parallel to n (why?)
- The gradients that are estimated around p are a scalar multiple of n
- The average of their outer products results in

$$T = \lambda n n^{T}$$

- for some value λ
- λ depends on W_1 , W_2 , and the local signal I



Motivation for **T**

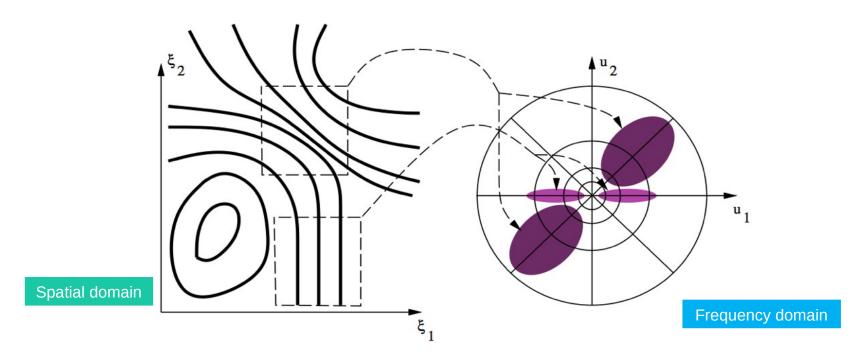
 The structure tensor has been derived based on several independent approaches

For example

- Stereo tracking (Lucas & Kanade, 1981) (Lec. 5)
- Optimal orientation (Bigün & Granlund, 1987)
- Sub-pixel refinement (Förstner & Gülch, 1987)
- Interest point detection (Harris & Stephens, 1988)

Local orientation in the Fourier domain

• Structures of different orientation end up in different places in the frequency domain



Optimal orientation estimation

- Basic idea:
- The <u>local signal</u> I(x) has a Fourier transform F(u).
- We assume that f is a i1D-signal
 - F has its energy concentrated mainly on a line through the origin
- Find a line, with direction n, in the frequency domain that best fits the energy of F
- Described by Bigün & Granlund [ICCV 1987]

Optimal orientation estimation

The solution to this constrained maximization problem must satisfy

$$\mathbf{T}\hat{\mathbf{n}} = \lambda\hat{\mathbf{n}}$$

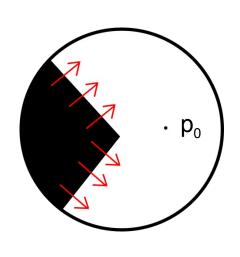
- Means: **n** is an eigenvector of **T** with eigenvalue λ
- In fact: Choose the eigenvector with the largest eigenvalue for best fit

Sub-pixel refinement

- Consider a local region and let $\nabla I(\mathbf{p})$ denote the image gradient at point \mathbf{p} in this region
- Let **p**₀ be some point in this region
- $\langle \nabla I(\mathbf{p}) \mid \mathbf{p} \mathbf{p}_0 \rangle$ i is then a measure of compatibility between the gradient $\nabla I(\mathbf{p})$ and the point \mathbf{p}_0
 - Small value = high compatibility
 - High value = small compatibility

A \mathbf{p}_0 that lies on the edge/line that creates the gradient minimizes $|\langle \nabla I(\mathbf{p}) | \mathbf{p} - \mathbf{p}_0 \rangle|$

Sub-pixel refinement



- In the case of more than one line/edge in the local region:
- We want to find the point \mathbf{p}_0 that optimally fits all these lines/edges
- We minimize

$$\epsilon(\mathbf{p}_0) = \|\langle \nabla I(\mathbf{p}) | \mathbf{p} - \mathbf{p}_0 \rangle\|_w^2$$

 where w is a weighting function that defines the local region

Sub-pixel refinement

 The normal equations of this least squares problem are:

$$\underbrace{\begin{pmatrix} \int_{\Omega} w(\mathbf{p}) \left(\frac{\partial I}{\partial u}\right)^2 d\mathbf{p} & \int_{\Omega} w(\mathbf{p}) \frac{\partial I}{\partial u} \frac{\partial I}{\partial v} d\mathbf{p} \\ \int_{\Omega} w(\mathbf{p}) \frac{\partial I}{\partial u} \frac{\partial I}{\partial v} d\mathbf{p} & \int_{\Omega} w(\mathbf{p}) \left(\frac{\partial I}{\partial v}\right)^2 d\mathbf{p} \end{pmatrix}}_{:=\mathbf{T}} \mathbf{p}_0 = \underbrace{\int_{\Omega} w(\mathbf{p}) \nabla I(\mathbf{x}) \nabla^T I(\mathbf{p}) \mathbf{p} d\mathbf{p}}_{:=\mathbf{T}}$$

• Solve the linear equation: $T p_0 = b$

This equation is solved for each local region of the image!

The Harris-Stephens detector

A Taylor expansion of the image intensity *I* at point (*u*, *v*):

$$I(u + n_u, v + n_v) \approx I(u, v) + \nabla I \cdot (n_u, n_v)$$

 $\approx I(u, v) + \nabla I \cdot \mathbf{n}$

The Harris-Stephens detector

• $S(n_u, n_v)$ is a measure of how much I(u, v) deviates from $I(u+n_u,v+n_v)$ in a local region Ω , as a function of (n_u, n_v) :

$$S(n_{u}, n_{v}) = \|I(u + n_{u}, v + n_{v}) - I(u, v)\|^{2}$$

$$= \int_{\Omega} w(u, v) \cdot |I(u + n_{u}, v + n_{v}) - I(u, v)|^{2} du dv$$

$$\approx \int_{\Omega} w(u, v) \cdot (\nabla I \cdot \mathbf{n})^{2} du dv$$

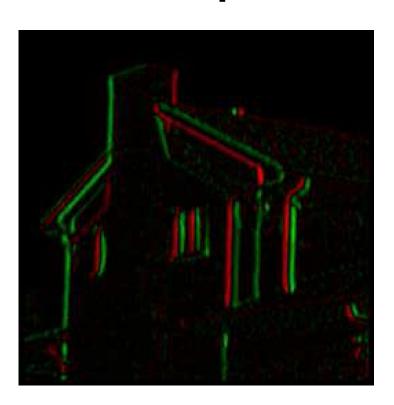
$$= \mathbf{n}^{\mathrm{T}} \left[\int_{\Omega} w(u, v) \cdot (\nabla I \nabla^{\mathrm{T}} I) du dv \right] \mathbf{n} = \mathbf{n}^{\mathrm{T}} \mathbf{T} \mathbf{n}$$

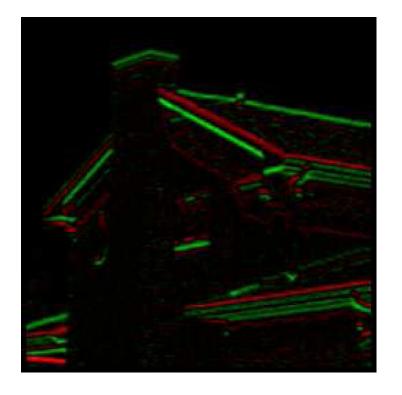
$$\stackrel{\cdot}{=} \mathbf{T}$$

The Harris-Stephens detector

- If Ω contains a linear structure, then S is small (=0) when \mathbf{n} is parallel to the line/edge
 - **T** must have one small (≈ 0) eigenvalue
- If Ω contains an interest point (corner) any displacement (n_u, n_v) gives a relatively large S
 - Both eigenvalues of T must be relatively large
- By analyzing the eigenvalues λ_1 , λ_2 of **T**:
 - If λ_1 large and λ_2 small: line/edge
 - If both λ_1 and λ_2 large: interest point
- See Harris measure below

Original image





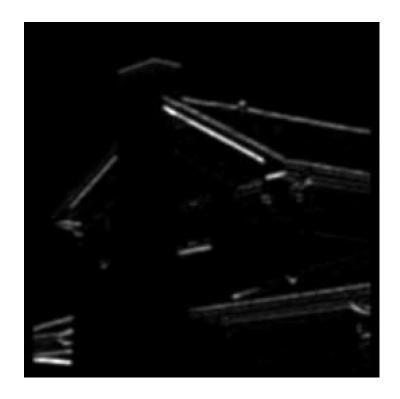
Gradient images

 f_{y}

Before averaging

 T_{11} image

After averaging

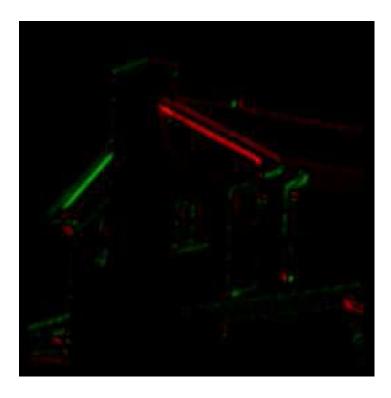


Before averaging

 T_{22} image

After averaging





Before averaging

 T_{12} image

After averaging

Example: Structure tensor in 2D

In the general 2D case, we obtain

$$\mathbf{T} = \lambda_1 \, \hat{\mathbf{e}}_1 \, \hat{\mathbf{e}}_1^T + \lambda_2 \, \hat{\mathbf{e}}_2 \, \hat{\mathbf{e}}_2^T \quad \text{(why?)}$$

- where $\lambda_1 \ge \lambda_2$ are the eigenvalues of **T** and $\hat{\mathbf{e}}_1$, $\hat{\mathbf{e}}_2$ are the corresponding normalized eigenvectors
- We have already shown that for locally i1D signals we get $\lambda_1 \ge 0$ and $\lambda_2 = 0$

Structure tensor in 2D, i0D

- If the local signal is constant (i0D), then $\nabla I = 0$
- Consequently: T = 0
- Consequently: $\lambda_1 = \lambda_2 = 0$
- The idea of optimal orientation becomes less relevant the closer λ_1 gets to 0

Structure tensor in 2D, i2D

- If the local signal is i2D, ∇I is not parallel to some \mathbf{n} for all points \mathbf{x} in the local region, i.e. the terms in the integral that forms \mathbf{T} are not scalar multiples of each other
- Consequently: $\lambda_2 > 0$ if f not i1D
- The idea of optimal orientation becomes less relevant the closer λ_2 gets to λ_1

Isotropic tensor

• If we assume that the orientation is uniformly distributed in the local integration support, we get $\lambda_1 \approx \lambda_2$:

$$T = \lambda_1 \, \hat{\mathbf{e}}_1 \, \hat{\mathbf{e}}_1^T + \lambda_1 \, \hat{\mathbf{e}}_2 \, \hat{\mathbf{e}}_2^T$$

$$= \lambda_1 (\hat{\mathbf{e}}_1 \, \hat{\mathbf{e}}_1^T + \hat{\mathbf{e}}_2 \, \hat{\mathbf{e}}_2^T)$$

$$= \lambda_1 \, \mathbf{I}$$
The identity matrix

- i.e. **T** is *isotropic*: $\mathbf{n}^{\mathsf{T}}\mathbf{T} \mathbf{n} = \mathbf{n}^{\mathsf{T}}\mathbf{l} \mathbf{n} = 1$
- Why is the parenthesis equal to I?

Confidence measures

 From det T and tr T we can define two confidence measures:

$$c_1 = \frac{\operatorname{tr}^2 \mathbf{T} - 4 \operatorname{det} \mathbf{T}}{\operatorname{tr}^2 \mathbf{T} - 2 \operatorname{det} \mathbf{T}}$$
 $c_2 = \frac{2 \operatorname{det} \mathbf{T}}{\operatorname{tr}^2 \mathbf{T} - 2 \operatorname{det} \mathbf{T}}$

Confidence measures

Using the identities

$$-\operatorname{tr} \mathbf{T} = T_{11} + T_{22} = \lambda_1 + \lambda_2$$

$$-\det \mathbf{T} = T_{11} T_{22} - T_{12}^2 = \lambda_1 \lambda_2$$

we obtain

$$c_1 = \frac{(\lambda_1 - \lambda_2)^2}{\lambda_1^2 + \lambda_2^2}$$
 $c_2 = \frac{2\lambda_1 \lambda_2}{\lambda_1^2 + \lambda_2^2}$

• and $c_1 + c_2 = 1$ (why?)

Confidence measures

- Easy to see that
 - i1D signals give $c_1 = 1$ and $c_2 = 0$
 - Isotropic **T** gives $c_1 = 0$ and $c_2 = 1$
 - In general: an image region is somewhere between these two ideal cases
- An advantage of these measures is that they can be computed from **T** without explicitly computing the eigenvalues λ_1 and λ_2

Decomposition of **T**

• We can always decompose **T** into an i1D part and an isotropic part:

$$\mathbf{T} = \lambda_1 \, \hat{\mathbf{e}}_1 \, \hat{\mathbf{e}}_1^T + \lambda_2 \, \hat{\mathbf{e}}_2 \, \hat{\mathbf{e}}_2^T$$

$$= (\lambda_1 - \lambda_2) \, \hat{\mathbf{e}}_1 \, \hat{\mathbf{e}}_1^T + \lambda_2 \, (\hat{\mathbf{e}}_1 \, \hat{\mathbf{e}}_1^T + \hat{\mathbf{e}}_2 \, \hat{\mathbf{e}}_2^T)$$

$$= (\lambda_1 - \lambda_2) \, \hat{\mathbf{e}}_1 \, \hat{\mathbf{e}}_1^T + \lambda_2 \, \mathbf{I}$$

Double angle representation

With this result at hand:

$$\mathbf{z} = \begin{pmatrix} T_{11} - T_{22} \\ 2T_{12} \end{pmatrix}$$

$$= (\lambda_1 - \lambda_2) \begin{pmatrix} \cos^2 \alpha - \sin^2 \alpha \\ 2\cos \alpha \sin \alpha \end{pmatrix}$$

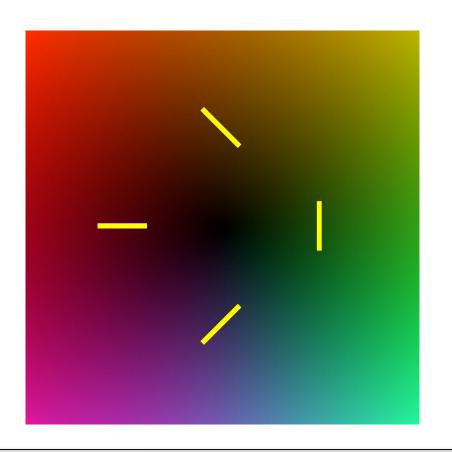
$$= (\lambda_1 - \lambda_2) \begin{pmatrix} \cos 2\alpha \\ \sin 2\alpha \end{pmatrix}$$

Remember: $\lambda_1 \geq \lambda_2$

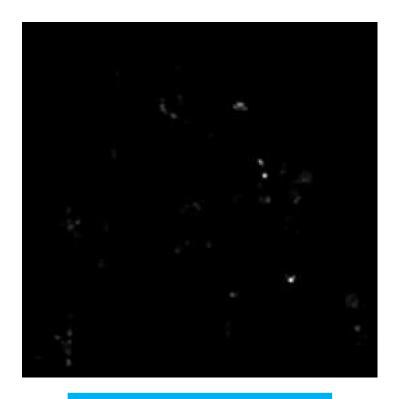
z cannot distinguish between i0D and i2D

• **z** is a double angle representation of the local orientation

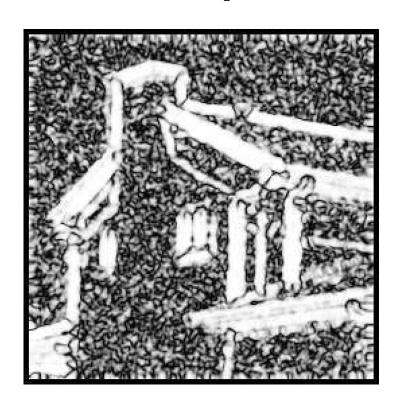
Color coding of the double angle representation



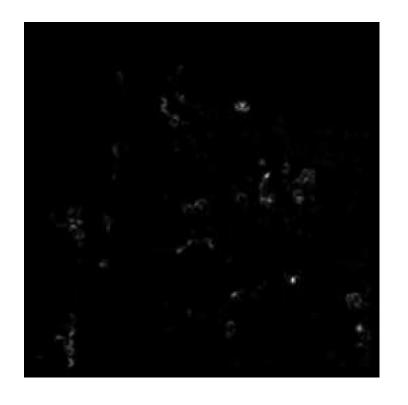
trace of **T**



determinant of **T**



 C_1



 $\lambda_{_{1}}$

Double angle descriptor

Rank measures

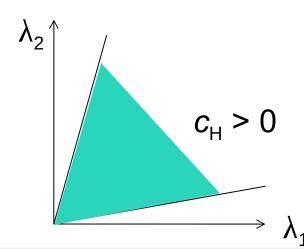
- The rank of a matrix (linear map) is defined as the dimension of its range
- We can think of c_1 and c_2 as (continuous) rank measures, since
 - $-i1D \text{ signal} \Rightarrow \mathbf{T} \text{ has rank } 1 \Rightarrow c_1 = 1 \text{ and } c_2 = 0.$
 - -Isotropic signal \Rightarrow **T** has rank 2 \Rightarrow c_1 = 0 and c_2 = 1.

Harris measure

• The Harris-Stephens detector is based on c_{H} , defined as

$$c_H = \det \mathbf{T} - \kappa (\operatorname{trace} \mathbf{T})^2, \qquad \kappa \approx 0.05$$

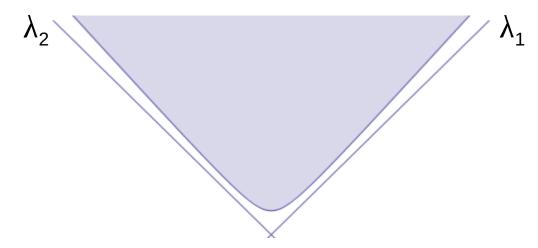
= $\lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$

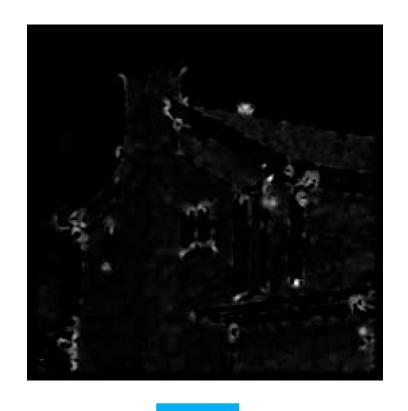


Different values for κ have been proposed in the literature!

Harris measure

• By detecting points of local maxima in $c_{\rm H}$, where $c_{\rm H} > \tau$, we assure that the eigenvalues of **T** at such a point lie in the colored region below





Origina

Harris

