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Motion

In many applications it is the case that

• the scene depicted in the image is dynamic

– moving objects

– deformable objects

• or the camera is moving relative to the scene

• in general: both cases
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Motion

• From the camera’s (viewer’s) perspective these two 
cases are indistinguishable

– Unless a high-level interpretation of the scene is 
available

• However, we can describe how points in the scene 
move relative to some reference frame, e.g., as 
defined by the camera
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The motion field
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The motion field is 
the projection of 
the 3D motion onto 
the image plane

It can be 
represented as a 
vector valued 
function of the 
image coordinate

m(x)

The 
pinhole 
camera
model



The motion field

• If we can measure the motion field m(x) it is possible 
to infer

– how points and objects are moving relative the 
camera, or

– how the camera is moving relative to the scene 
(ego-motion estimation)
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The motion field
• In practice, we cannot measure m(x) directly

• However, we can measure how the image intensity 
moves/varies over time
– Optical flow

• But there is no direct relation between the optical flow and 
the motion field
– 3D motion may not always generate temporal variations in the image

• 3D points that move along the projection lines have constant positions in the 
image

– Temporal variations in the image may not always correspond to 3D 
motion
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Will be formally defined shortly



Physical vs visual motion
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From Jähne & Haussecker



Displacement estimation
• One approach to motion estimation considers two images 

of the same scene, e.g.

– Taken at two different time points, same camera position

• Images from a video sequence, e.g., two consecutive 
images.  Displacement is an estimate of the motion 
field m(x)

– Taken from two different positions, possibly at the same 
time point

• Stereo images.  Displacement is an estimate of depth 
in the scene (assuming a stationary scene)

8



Example (from Middlebury)
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Mathematical model

• Assumption:

J(x) = I(x + d) for all x 2 

• Pixel values are constant, but displaced by d

• How can we determine d for each point x?
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A point
x=(u,v)

A region 
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around x
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Estimation of d

• d, at point x, can be estimated by forming a cost 
function, based on the constancy of the pixel values:

• The minimizer of ε is an estimate of d at x, which we 
then use as an estimate of m(x)
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A region of the 
origin, same size 
as 

A weighting function, e.g., 
a Gaussian, of same size 
as 



Estimation of d

• As an estimate of m(x), d(x) is referred to as optical 
flow (or optic flow)

• Finding the minimizer of ε is a non-linear estimation 
problem

– Computationally complex problem

• It can be simplified by a linearization of I

12



Linearization of I

• At each point x+y, the dependency on d in the 
intensity function I can be expressed as a Taylor 
expansion:

• Assumption: higher order terms in d can be 
neglected
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Linear estimation of d

With this linearlization of I at hand:

• We want to find the minimum of ε with respect to the 
elements of d = (v1, v2)

• Find d where 
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Equation 
(A)



Determining d
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



The Lucas-Kanade equation
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Assumption: d is constant within 
, i.e., d is independent of y

T d = s
This is the Lucas-Kanade equation (LK-equation).
One equation per pixel in the image (gives one d per pixel)



The structure 
tensor



Determining d

• In principle, d can be determined from the LK-equation 
as

• Only works if T is not singular, i.e.,
I in  must not be i1D

• Lucas & Kanade: An Iterative Image 
Registration Technique with an 
Application to Stereo Vision, IUW, 1981
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d = T-1 s



Alternative derivation of LK

• The LK-equation derived here is based on finding the 
local displacement between two images

• An alternative derivation is provided by the 
brightness constancy principle
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Brightness constancy

• Think of the intensity function I as explicitly 
depending on the 3 variables, I = I(u, v, t)

• Basic assumption:

– If we observe intensity I at (u, v, t), this intensity 
remains constant over time, but it may 
change position as a function of time

• This is referred to as: brightness constancy
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Mathematical formulation

Means: the total derivative of I w.r.t. t is = 0

Expand in partial derivatives of I:
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Mathematical formulation

Cont.

• v = (v1, v2) is the velocity vector of the intensity I at 
(u, v, t)

• v is a function of (u, v, t), v = v(x)

• Local estimate of the motion field m(x)
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BCCE / Optic flow equation

Cont.

• This is the
Brightness Constancy Constraint Equation
(BCCE)

• A.k.a. the optical (optic) flow equation
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Alternative 
formulation:



BCCE

• Is a differential equation

• It assumes that we can determine/estimate the 
temporal derivative of I at (u, v, t)

– In practice, it must be estimated in terms of finite 
differences

– Compare to the two-image derivation of the LK-eq

• BCCE is one equation per pixel (and time)

– But it has 2 unknowns: (v1, v2)

– Cannot be solved at the pixel level
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Determining v

• At a pixel x = (u, v), at time t, we can formulate a cost 
function

• Assumes that v is constant within 

• This cost function is very similar to the one used for 
the 2-image case, Equation (A), slide 14
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LK-equation, again…

• Minimizing ε, therefore, implies finding v such that

• Where 
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T v = s Continuous time LK-
eq



The aperture problem

• Regardless of how the LK-eq has been derived, it 
cannot be solved robustly for pixels where I in  is 
i1D

• Even approximately i1D may cause problems

• This is related to the so-called
aperture problem:

– In a i1D region we cannot determine the 
local displacement/velocity along a 
line/edge
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The aperture problem

• Is the pattern in the
circle moving down,
right, or right-down?

• Since the pattern is i1D, its velocity cannot be 
completely determined

• We can, however, determine a unique
normal velocity

– How?
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BCCE revisited
• A consequence of BCCE:

In the 3D spatio-temporal volume,
I must be constant in a direction given by
vST = (v1, v2, 1)

• This implies that ∇STI, the 3D spatio-temporal 
gradient of I, is orthogonal to vST
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Example
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Time

Horisontal 
position

VST



A new cost function 

• We define a new cost function ST as

where

1/27/22 30Lecture 4



Spatio-temporal motion vector

•         (and vST) is called the spatio-temporal motion 
vector (it is 3-dimensional)

• ∇STI is the spatio-temporal gradient of I (also 3-
dimensional)

• We will minimize ST over        , with the additional 
constraint

• This is a total least squares formulation of how to 
determine v(x) 
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Finding the minimum of ST 

• The constraint can be expressed as

• The solution is given by             = (r1, r2, r3) 
that satisfies

for k = 1, 2, 3 (why?)
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Lagrange’s method 
for minimisation 
with constraints



The 3D structure tensor revisited
• These 3 equations can be rewritten as

(why?)

• Note that the expression inside the bracket is a 3D 
structure tensor!
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The 3D structure tensor revisited
• We rewrite this as

• This means that the          which minimizes  
must be an eigenvector of T3D

• It should also be normalized: 

• The eigenvector that minimizes  is the one of
smallest eigenvalue (why?)

34



The 3D structure tensor revisited
• Once           = (r1, r2, r3) has been determined we can 

find vST that is

– Parallel to

– Has its last component = 1

• The first two components of vST are the motion vector 
v = (v1, v2)
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Summary

• We now have 2 alternatives to local motion 
estimation based on BCCE:

1. least squares minimization
(based on T2D and s)

2. total least squares minimization
(based on T3D)
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Summary: Least squares minimization

• Minimize

where vST = (v1, v2, 1) over the motion components 
v = (v1, v2)

• Find v by solving T2D v = s

• We can see vST as a homogeneous representation 
of v
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Summary: Total least squares minimization

• Minimize

over all components of            = (r1, r2, r3) and with the 
constraint 

• Find             as the eigenvector of smallest eigenvalue 
with respect to T3D

• Find v from           as 
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The 3D tensor

• In the 3D case, we compute a structure tensor 
T3D, a symmetric 3 × 3 matrix, that can be 
decomposed as (the spectral theorem)

 

where 1 ≥ 2 ≥ 3 ≥ 0 are the eigenvalues of 
T3D and êk are the corresponding eigenvectors 
(an orthonormal set)
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The 3D structure tensor
• In general (not only in the case of motion) we can 

distinguish between three cases of the local 3D signal

– The signal is constant on parallel planes (i1D)

– The signal is constant on parallel lines (i2D)

– The signal is isotropic

• Remember that T is formed as
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The signal is constant on parallel planes (Lasagna)

• (Case 1) The 3D signal is i1D

– The gradient ∇3I is always parallel to the normal 
vector of the planes

– T has rank 1

– ê1 is a normal vector to the planes

– A moving 2D line generates a 3D signal that is 
i1D ) T has rank 1
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The signal is constant on parallel planes

• In this case, the Fourier transform of I is 
concentrated along a line through the origin, in the 
direction of ê1
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The signal is constant on parallel lines (Spaghetti)

• (Case 2) The 3D signal is intrinsic 2D (i2D)
– The gradient ∇3I is always perpendicular 

to the direction ê3 of the lines

– ê3 is an eigenvector of eigenvalue 0 relative to T

– T has rank 2

– A moving point generates a 3D signal that is i2D
⇒ T has rank 2
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The signal is constant on parallel lines

• In this case, the Fourier transform of I is 
concentrated to a plane through the origin, that has 
ê3 as its normal vector

• In other words, the plane is spanned by
ê1 and ê2
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The signal is isotropic (Dumpling)
• (Case 3) The signal varies 

uniformly in all directions
– The gradient ∇3I is not 

restricted to some subspace

where 1, 2 and 3 all are  0.

– T has rank 3

– Not consistent the BCCE
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The signal is isotropic

• In the isotropic case, variations in all directions are 
uniformly distributed

• Implies that 1 = 2 = 3 = 

• We can write T =  I   (I is the identity tensor)

• The Fourier transform of the signal extends into all 3 
dimensions
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Confidence measures

• As confidence measures for the three cases we can 
use, for example:

47

Case 1

Case 2

Case 3



Confidence measures

• They satisfy c1 + c2 + c3 = 1.

• Furthermore

– i1D-signal ⇒ T has rank 1 ⇒
1 > 0, 2 = 3 = 0 ⇒ c1=1, c2 = c3 = 0.

– i2D-signal ⇒ T has rank 2 ⇒
1 ≥ 2 > 0, 3 = 0 ⇒ c2  0, c3 = 0.

– Isotropic signal ⇒ T has rank 3 ⇒ c3  0.
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Decomposing T

• Based on these confidence measures, T can be 
decomposed as
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Summary
• Given a local picture of the signal:

– The directions along which the signal is constant 
correspond to the null space of T

– T has a range that is orthogonal to this null space

– In the Fourier domain: the energy is concentrated 
to the range of T
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Summary
• The rank of T equals the dimension of its range
• The range represent the dimensions in the Fourier 

domain where there is energy
• We can define confidence measures

(in various ways) that indicate which rank or case 
that T represents

• In general, T can be a combination of the different 
cases
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Computation of the motion vector (rank 2)

• At each point (x1, x2, t) we can estimate the local 3D 
structure tensor T

• If T has rank 2 it corresponds to a non-i1D signal in 
the 2D image

• Since T has rank 2 we can ”uniquely” determine an 
eigenvector of smallest eigenvalue:
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Computation of the motion vector (rank 2)

• From the previous derivations we know that

• Consequently, we can compute the motion 
components as

53



Computation of the motion vector (rank 1)

• If T has rank 1 it means that the corresponding 2D-
signal is i1D

– A moving line or edge

• The null space of T is 2-dimensional

• We cannot uniquely determine vST, and therefore v 
cannot be uniquely determined

• Related to the aperture problem
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Computation of the motion vector (rank 1)

• However, in this case we can determine the normal 
motion of the 2D-signal

• Let p=(p1, p2, p3) be an eigenvector of largest 
eigenvalue relative to T
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Computation of the motion vector (rank 1)

– The spatio-temporal normal motion vector vST 
must satisfy

– (why?)
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Computation of the motion vector (rank 1)

• From these two relations, the normal motion is given 
as
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Computation of the motion vector (rank 3)

• Finally, if T has rank 3 this implies that the local 
signal does not satisfy the conditions expressed in 
BCCE.  (why?)
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A strategy for motion estimation
• Compute the 3D tensor T3

• Determine its eigenvalues

• Classify the tensor into each of the three cases, based 
on some confidence measures  (how?)

• If rank 1: compute the normal motion

• If rank 2: compute the “true” motion

• If rank 3: no motion can be determined
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