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Today’s lecture

•  What are local features used for? 
•  The local (invariant) features paradigm 
•  Invariances: Geometric, Photometric 
•  Examples: SIFT, MSER/MSCR… 
•  Feature matching
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What are local features used for?

 KLT tracking and block matching are useful 
when matching between consecutive 
frames in a video sequence. 
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What are local features used for?

 KLT tracking and block matching are useful 
when matching between consecutive 
frames in a video sequence.  
• Images are from the same camera 
• small changes in scale, rotation and 

illumination
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What are local features used for?

 KLT tracking and block matching are useful 
when matching between consecutive 
frames in a video sequence.  
• Images are from the same camera 
• small changes in scale, rotation and 

illumination 
 Local invariant features work when these 

conditions are violated.
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Wide-baseline stereo

• Problem 1: wide-baseline stereo 
– Matching images of the same scene, 

captured at different positions.
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Wide-baseline stereo

• Problem 1: wide-baseline stereo 
– Matching images of the same scene, 

captured at different positions.
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Object instance recognition 
and pose estimation

• Problem 2: bin picking 
– identity and pose estimation under partial 

occlusion 
– training set 
– test set 
– 6dof pose

8



February 9, 2022 Computer Vision lecture 8

Computer Vision Laboratory

Object recognition

• Example: Eddie the embodied 
 

• See webpage for details 
https://www.cvl.isy.liu.se/research/objrec/EVOR/
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Local invariant features

• In lecture 2 we discussed how to match 
across scale and translation. How?
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Local invariant features

• In lecture 2 we discussed how to match 
across scale and translation. How? 

• Another option is to use interest points 
e.g. Harris points [Z. Zhang et al. 95]: 

1. Detect interest points 
2. Cut out image patches around each point 
3. Matches can now be found by comparing 

patches+epipolar geometry constraints.
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Local invariant features

• Correspondences from block matching at 
Harris points (assignment problem:LE7).
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Local invariant features

• After applying the Epipolar constraint 
(You will test this in CE3).
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Epipolar constraint (recap)

• The epipolar constraint: xT
1 Fx2 = 0
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Epipolar constraint (recap)

• The epipolar constraint:

baseline

X=
X
Y( )Z

e1
e2

o1 o2

camera 1 camera 2

x2
x1

epipolar plane

epipolar lines

xT
1 Fx2 = 0
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Epipolar constraint (recap)

• The epipolar constraint: 
• x1 and x2 are projections of the same 

3D point in two views.  
• Scene is static, i.e. no motion has taken 

place (except the change of camera 
position). 
• F can be estimated from 7 or more 

correspondences. E.g. 8-pt algorithm.

xT
1 Fx2 = 0
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Epipolar constraint (recap)

• The epipolar constraint: 
• See the compendium, Introduction to 

Representations and Estimation in 
Geometry (IREG), Klas Nordberg

xT
1 Fx2 = 0
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Local invariant features

• Zhang’s interest point method. (repeat) 
1. Detect interest points 
2. Cut out image patches around each point 
3. Find matches, by comparing patch 

descriptors and epipolar geometry 
constraints.
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Local invariant features

• Zhang’s method is invariant to 
translation (and partially to scale). 
 

– 2 degrees-of-freedom (DOF) of invariance 
(transl. only) (3 if scale is also counted)

20



February 9, 2022 Computer Vision lecture 8

Computer Vision Laboratory

Local invariant features

• Zhang’s method is invariant to 
translation (and partially to scale). 
 

– 2 degrees-of-freedom (DOF) of invariance 
(transl. only) (3 if scale is also counted) 

• We will now add invariance to image 
rotations and view changes.
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Local invariant features

• In general, the local invariant feature 
approach can be described as three steps: 
– Detection: Use a detector to find a local, 

canonical frame (a coordinate system)
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Local invariant features

• In general, the local invariant feature 
approach can be described as three steps: 
– Detection: Use a detector to find a local, 

canonical frame (a coordinate system) 
– Description: Compute a descriptor, by 

sampling the image in the canonical frame
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Local invariant features

• In general, the local invariant feature 
approach can be described as three steps: 
– Detection: Use a detector to find a local, 

canonical frame (a coordinate system) 
– Description: Compute a descriptor, by 

sampling the image in the canonical frame 
– Matching: Find correspondences, by 

comparing descriptors from two images
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Canonical frame example

• Resampling to canonical frame
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Local invariant features

• Geometric invariances 
 
 

• Photometric invariances

26

Robustness to 
view changes

Robustness to 
illumination changes
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Local invariant features

• Geometric invariances can be 
obtained by choosing a frame that is 
equivariant to rotations, scalings, and 
image skews 

• Photometric invariances can be 
obtained by computing the descriptor 
in a more advanced way than direct 
sampling.
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Geometric Invariance

• The geometric invariances used in local 
features make a locally planar 
assumption. 

• They can thus be described using 
homographies (See IREG, TSBB06). 
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Geometric Invariance
– Recap: A Homography is a transformation 

between points x on one plane, and points y 
on another. 
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Geometric Invariance
– Recap: A Homography is a transformation 

between points x on one plane, and points y 
on another. 
 

• Degrees of freedom: minimal number of 
parameters needed in H. 
– at most 8dof (for plane projective case), 

 as H and 
 give the same output
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Geometric Invariance

• A hierarchy of transformations: 
– scale+translation (3dof) 

– similarity (4dof) 
(scale+translation+rotation) 

– affine (6dof) 
(similarity+skew) 

– plane projective (8dof) 
(affine+foreshortening)

2

4
h11 h12 h13

h21 h22 h23

h31 h32 h33

3

5
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Geometric Invariance

• We can find the canonical frame by 
using more than one point 
[Brown&Lowe 02] aka. interest-point 
groups 

• We will now give some examples...
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Geometric Invariance
– Scale+translation: Useful if we know that 

there is no rotation. E.g. for a camera 
mounted in a car, looking at upright 
pedestrians.
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Geometric Invariance
– Similarity: Full invariance in image plane, 

none outside image plane. 
Useful e.g. for pose estimation.
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Geometric Invariance
– Affine: Deals with most common 

projective distortions. Good if patch size 
is small relative to distance to patch.
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Geometric Invariance
– Plane projective: Full modelling of a plane 

in 3D. Requires more image 
measurements, but is better for extreme 
view angles.
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Geometric Invariance
• Resampling to canonical frame 

results in 
geometric 
invariance:
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Geometric Invariance
• Problems with interest-point groups:  

– Sensitive to missing points: 
 
If e=P(point-detected|present) then  
 
P(frame-is-detected|present)=eN 

 

where N is number of points in frame.
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Geometric Invariance
• Problems with interest-point groups:  

– Sensitive to missing points: 
If e=P(point-detected|present) then  
P(frame-is-detected|present)=eN 

where N is number of points in frame. 
– Combinatorics: if K points in image, we have 

          possible canonical frames. 

• We will introduce other ways to find the 
frame soon.
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Photometric Invariance
– Image intensity is linear in radiance 
– the sensor activation, a(x): 

 
 
 
s(𝜆) - sensor absorption spectrum 
e(𝜆) - spectrum of incoming light 
         (attenuated by the atmosphere)

40
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Photometric Invariance
– Image intensity is linear in radiance 
– the sensor activation, a(x): 

 
 
 
s(𝜆) - sensor absorption spectrum 
e(𝜆) - spectrum of incoming light 
         (attenuated by the atmosphere) 

– Adding a second, identical light source will double e(𝜆), 
and thus also a(x). 

– After gamma correction this is perfect linearity is broken. 
But we still have approximate linearity.

41

<latexit sha1_base64="y9MtVGvvA7N2lue71EUsImWW+A8="></latexit>

a(x) =

Z
s(�)e(�)d�



• If illumination changes, image matching fails: 
 
 

• We want a function that is invariant to scalings: 
 

• How should we choose the invariant f()?
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Photometric Invariance

I(x) = I0(x)k1

J(x) = I0(x)k2
) X

x2⌦

(I(x)� J(x))2 = non-zero

X

x2⌦

(f(I(x))� f(J(x)))2 = small number
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Photometric Invariance
• For cameras with gamma correction, or if two 

different cameras are used we may use the 
affine model: 
 

• How should we choose f ()? we want:

I(x) = I0(x)k1 + k2

X

x2⌦

(f(I(x))� f(J(x)))2 = small number
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Photometric Invariance
– Invariance to intensity offsets: 

Mean subtraction, and any DC free linear 
filters, e.g. derivatives. 

– Scaling invariance: 
Normalising a patch by an Lp-norm, e.g. 
the L2-norm or the standard deviation 

– Affine invariance by combining both:

Î(x) = (I(x)� µI)/�I
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Photometric Invariance

• Illustration:
Input Gradient

  St.dev-
Normalised 

gradient

St.dev-
Normalised 

input

I(x)

J(x)
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Local Invariant Features

• There are many examples of features that 
fit the descriptor+detector paradigm. 

• The two most widely used are:  
– SIFT Scale Invariant Feature Transform 

(Lowe 99) 
– MSER Maximally Stable Extremal Regions 

(Matas et al. 02) 
• We will look at these two in more detail.
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SIFT

• Scale Invariant Feature Transform 
[Lowe’99]. In brief: 
– The SIFT detector finds points using 

Difference-of-Gaussians in a pyramid 
Gives: position x,y and scale s 

– Rotation is found from a gradient histogram 
– This gives a frame for the SIFT descriptor, 

which is computed from gradient 
orientation histograms.
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SIFT detector

• Scale space (recap. from LE2) 
– The image is extended with an extra 

dimension for scale/blur: 

– The blurring kernel          is typically a 
Gaussian:

g(x, s) =
1

2⇡s
e�xTx/2s2
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SIFT detector

• Scale selection [Lindeberg’93] 
– Find a characteristic point (e.g. local max) 

on a function of position and scale: 
 

– Example: Maximum of normalised Laplacian: 
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SIFT detector

Illustration by (Mikolajczyk et al. 2005)
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SIFT detector

• In SIFT, scale selection is done using 
difference-of-Gaussians: 

• Efficient implementation using pyramids 
[Lowe’99] 

• Sampling in scale space with 

hSIFT(f(x,�)) = (f ⇤ (g(�)� g(k�)))(x)
<latexit sha1_base64="Jmr4x1pCPhzmcN8KJhd8gkMwAyQ="></latexit>
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SIFT detector

Non-max suppression in (x,y,s)g(�1) ⇤ g(�2) = g

✓q
�2
1 + �2

2

◆
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SIFT detector
– Finally we find one or more reference 

directions using a gradient orientation 
histogram h at the found location in scale 
space.
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SIFT descriptor

• The SIFT detector gives us a similarity 
frame. What is this? 
– We now want to convert the image patch at 

the frame to a 128-byte descriptor vector. 
– The purpose of this is to add photometric 

invariance, and some extra translation and 
scale robustness.
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SIFT descriptor
– Compute x- and y-gradients through convolution: 

 

– Rotate gradient map to direction from orient-hist: 

– Compute gradient orientation histograms in 4x4 
spatial regions:

55



February 9, 2022 Computer Vision lecture 8

Computer Vision Laboratory

SIFT descriptor
– Compute gradient orientation histograms in 4x4 

spatial regions : 
 
  

– Bk(x) linear interpolation kernel 
Quadratic is better (Jonsson&Felsberg) 

– Subwindows                       directions  
– Spatial weight                     (Gaussian decay)
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SIFT descriptor
– Implementation with source code in 

both VLfeat and OpenCV.

Note that 4x4 regions are actually used, with 8 orientations -> 128 elements

57



February 9, 2022 Computer Vision lecture 8

Computer Vision Laboratory

SIFT descriptor
– Affine illumination invariance by using gradients 

and normalising descriptor 
– Some robustness by truncating and 

normalising again 
– The spatial histogramming gives robustness to 

scale/rotation/translation errors.

ˆ̂h = min(t, ĥ)/kmin(t, ĥ)k
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SIFT descriptor
– Affine illumination invariance by using gradients 

and normalising descriptor 
– Some robustness by truncating and 

normalising again 
– The spatial histogramming gives robustness to 

scale/rotation/translation errors. 
– SIFT is used commercially in many places. 

(The Sony AIBO anno 1999, was an 
early example.) Patent has now expired.

ˆ̂h = min(t, ĥ)/kmin(t, ĥ)k
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MSER

• Maximally Stable Extremal Regions 
[Matas et al.’02] 

• Consider the set of all possible 
thresholdings of an image... 
 
                      [Movie clip]
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MSER
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MSER
• Connected regions form segments. 

– Cf. Watershed algorithm (similar idea but 
different output) 

– Look at stability of a function of segment across 
image evolution. e.g. 

– MSERs are components that are maximally 
stable, i.e., have a local minimum of the rate 
of change: 
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MSER
– compare: Maximal Stability, Scale 

Selection 
• Stability measure: Range of stable 

thresholds t2-t1 around min is called 
the margin of the region.
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MSER
– Two possible thresholdings:               , 

 
 
 
 

– Very fast (using union/find+path compression). 
– MSER type (+/-) is useful for matching How?

64 MSER+ (total 294)Input image 64 MSER- (total 272)
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MSER
– MSER is invariant to monotonic changes of intensity. 

i.e. I(x) and f(I(x)) have the same output if 

– Wide range of sizes obtained without a scale pyramid. 
Better still with a pyramid (Forssén&Lowe ICCV’07) 

– Colour objects can be tracked by computing MSERs 
on the Mahalanobis distance to a colour distribution. 
(Donoser&Bischof CVPR’06) 

– Colour regions by looking at gradients. 
Called MSCR (Forssén CVPR’07)
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MSCR
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MSCR

In OpenCV
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MSER

Matas et al. ICPR’02

• Reference directions from extremal points 
along ellipse-normalized contour.
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MSER

• Approximating ellipse 
– from moments of binary mask 
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MSER
– Normalisation to a circle (axis aligned) 

Compute the eigenfactorisation: 
 
 
The circle normalisation can now be 
performed as: 
 
 
   - canonical coordinates 
   - image coordinates
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MSER

• Ellipse+extrema of distance to centre is 
just one frame construction option. 

• Other (affine covariant) choices: 
– Points of maximum curvature. 
– Bi-tangens. 
– See Obdrzalek&Matas BMVC’02 

• Implementation w. source: 
in both VLfeat and OpenCV
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MSER descriptor
• The MSER detector originally used normalized 

colour patches as descriptor vectors: 
 
 
 
 

• Nowadays other descriptors, e.g. the SIFT 
descriptor are used. 
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Other local invariant features
• SFOP 

http://www.ipb.uni-bonn.de/sfop/ 
• BRISK 

Source Code+description 
http://www.asl.ethz.ch/people/lestefan/personal/BRISK 
• FREAK, ORB 

In OpenCV features2d 
• SURF and SIFT 

in OpenCV xfeatures2d (in LiU installation)
73
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Binary descriptors
• To save memory and time, many descriptors 

use local binary patterns: 
 
 
 

• sign of intensity difference has monotonic 
illumination invariance

Image from Alexandre et al. CVPR 2012
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Binary descriptors
• To save memory and time, many descriptors 

use local binary patterns: 
 
 
 

• E.g. BRIEF (ECCV’10), BRISK (ICCV’11), 
ORB (ICCV’11), FREAK (CVPR’12)

Image from Alexandre et al. CVPR 2012
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Deep learning descriptors
Examples: 
• DeCAF (ArXiv’13) descriptors  
• TILDE (CVPR’15) detector 
• LIFT (ECCV’16) detector and descriptor 
• SuperPoint (CVPRw’18) detector + descriptor 
• LF-Net (NIPS’18) detector+descriptor 

Better matching performance at the price of more 
expensive computations.
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A note on invariance
Always strive to limit amount of invariance 
• For hand-coded features: use knowledge on imaging 

situation 
• e.g. a car mounted camera may not need rotation 

invariance for pedestrians. 
• e.g. in a video with smooth illumination changes, 

affine illumination invariance is not necessary 
• Learned local features do this based on the training set 

• Knowing the training set is important!
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Descriptor Matching

• The Local Invariant Feature method: 
• Detection 
• Description 
• Matching
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Descriptor Matching
– For a descriptor q in a query image. Which 

prototype in memory (p1,p2,...,pN) is most 
likely to correspond to the same world object?
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Descriptor Matching
– For a descriptor q in a query image. Which 

prototype in memory (p1,p2,...,pN) is most 
likely to correspond to the same world object? 

– Assuming additive i.i.d. Gaussian noise on all 
elements:
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Descriptor Matching
– So, the match with smallest distance is 

most likely correct, assuming i.i.d. 
Gaussian noise. 

– What about the scalar product for 
normalised vectors/NCC? 
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Descriptor Matching
– So, the match with smallest distance is 

most likely correct, assuming i.i.d. 
Gaussian noise. 

– What about the scalar product for 
normalised vectors/NCC? 
 

– But are all values identically distributed? 
– ...are they all independent?
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Descriptor Matching

• For binary descriptors (e.g. BRIEF) the 
Hamming distance is used: 
 
      s = bitcnt(XOR(P,Q))  

• Also makes i.i.d. assumption. 
• Binomial distributed s~Bin(n,p)
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Distance ratio

Risk of mismatch 
can also be taken 
into account by 
looking at the ratio 
of the best and 
second best match.

r = dmin/dsecond smallest

p(r|correct) and p(r|incorrect)
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Distance ratio

If we have a set of matches for descriptors q1 
and q2 in the image. Which one is better?

85

p1

p2 p3

p4
p5

q1

q2

d(p,q) q1 q2

p1 0.11 0.81

p2 0.68 0.11

p3 0.93 0.91

p4 0.08 0.63

p5 0.74 0.75
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Dense invariant features
• (semi-)dense flow for wide baseline 

problems can be obtained by matching 
invariant features 
• at every pixel and at several scales 
• e.g. SIFTflow, DSIFT, PHOW, DAISY 
• Expensive to compute, unless GPGPU 

is used.
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Summary

• Use local invariant features: 
when KLT fails 

• But use no more invariance than needed 
• Two types of invariance: Photometric 

and Geometric invariance  
• Recognition in three steps: Detection, 

Description and Matching 
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Upcoming course events

• CE2: Tomorrow 13-17 in Asgård. 
Checkup for CE1 at 13.00. 

• Next Lecture (16/2, 10-12) 
Biological vision. Voluntary. 
Based on PhD course on Biological Vision 
Systems.
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