Derivation of the Lucas-Kanade Tracker

Björn Johansson

November 22, 2007

1 Introduction

Below follows a short version of the derivation of the Lucas-Kanade tracker introduced in [2]. A derivation of a symmetric version can also be found in [1] (the derivation here is very much inspired from [1], with a few iterative and practical issues added).

2 Derivation

Define the dissimilarity between two local regions, one in image I and one in image J :

$$
\begin{equation*}
\epsilon=\iint_{W}[J(\mathbf{x}+\mathbf{d})-I(\mathbf{x})]^{2} w(\mathbf{x}) d \mathbf{x} \tag{1}
\end{equation*}
$$

where position is denoted by $\mathbf{x}=[x, y]^{T}$, and displacement by $\mathbf{d}=\left[d_{x}, d_{y}\right]^{T}$. The integration region W is a local region around a pixel. The weighting function $w(\mathbf{x})$ is usually set to the constant 1 , and we will for simplicity ignore the weight in the derivation from now on. The cost (1) is identical to the equation given in [2]. Now the Taylor series expansion of $J(\mathbf{x}+\mathbf{d})$ about the point \mathbf{x}, truncated to the linear term, is

$$
\begin{equation*}
J(\mathbf{x}+\mathbf{d}) \approx J(\mathbf{x})+d_{x} \frac{\partial J}{\partial x}(\mathbf{x})+d_{y} \frac{\partial J}{\partial y}(\mathbf{x})=J(\mathbf{x})+\mathbf{d}^{T} \nabla J(\mathbf{x}) \tag{2}
\end{equation*}
$$

where $\nabla J=\left[\frac{\partial J}{\partial x}, \frac{\partial J}{\partial y}\right]^{T}$. Therefore (ignoring w),

$$
\begin{align*}
\epsilon & \approx \iint_{W}\left[J(\mathbf{x})-I(\mathbf{x})+\mathbf{d}^{T} \nabla J(\mathbf{x})\right]^{2} d \mathbf{x}, \text { and } \tag{3}\\
\frac{\partial \epsilon}{\partial \mathbf{d}} & \approx 2 \iint_{W}\left[J(\mathbf{x})-I(\mathbf{x})+\mathbf{d}^{T} \nabla J(\mathbf{x})\right] \nabla J(\mathbf{x}) d \mathbf{x} . \tag{4}
\end{align*}
$$

To find the displacement \mathbf{d}, we set the derivative to zero

$$
\begin{equation*}
\iint_{W}\left[J(\mathbf{x})-I(\mathbf{x})+\mathbf{d}^{T} \nabla J(\mathbf{x})\right] \nabla J(\mathbf{x}) d \mathbf{x}=0 \tag{5}
\end{equation*}
$$

Rearranging terms, we get

$$
\begin{align*}
\iint_{W}[J(\mathbf{x})-I(\mathbf{x})] \nabla J(\mathbf{x}) d \mathbf{x} & =-\iint_{W} \nabla J^{T}(\mathbf{x}) \mathbf{d} \nabla J(\mathbf{x}) d \mathbf{x} \tag{6}\\
& =-\left[\iint_{W} \nabla J(\mathbf{x}) \nabla J^{T}(\mathbf{x}) d \mathbf{x}\right] \mathbf{d} . \tag{7}
\end{align*}
$$

In other words, we must solve an equation of the form

$$
\begin{equation*}
\mathbf{T} \mathbf{d}=\mathbf{e} \tag{8}
\end{equation*}
$$

where \mathbf{T} is the 2×2 matrix

$$
\begin{equation*}
\mathbf{T}=\iint_{W} \nabla J(\mathbf{x}) \nabla J^{T}(\mathbf{x}) d \mathbf{x} \tag{9}
\end{equation*}
$$

and \mathbf{e} is the 2×1 vector

$$
\begin{equation*}
\mathbf{e}=\iint_{W}[I(\mathbf{x})-J(\mathbf{x})] \nabla J(\mathbf{x}) d \mathbf{x} \tag{10}
\end{equation*}
$$

3 Iteration

The solution to (8) above only approximately minimizes the dissimilarity (1), since we are using a truncated Taylor expansion. The solution can be improved by iterative refinement in the following way:

1. Set $\mathbf{d}_{\mathrm{tot}}=0$.
2. Compute \mathbf{T} and \mathbf{e} in (9) and (10) respectively, and solve (8) to get \mathbf{d}.
3. Update $\mathbf{d}_{\text {tot }} \leftarrow \mathbf{d}_{\text {tot }}+\mathbf{d}$. Compute a new image $J\left(\mathbf{x}+\mathbf{d}_{\mathrm{tot}}\right)$ and gradients $\nabla J\left(\mathbf{x}+\mathbf{d}_{\mathrm{tot}}\right)$ by interpolating the original image $J(\mathbf{x})$ and its gradient $\nabla J(\mathbf{x})$.
4. Go back to step 2 , using the new data from step 3 instead of the original J and ∇J.

Iterate until some stop criterion is fulfilled, e.g. maximum number of iterations or if $\|\mathbf{d}\|$ is below a certain value.

4 Practical issues

A true derivative cannot be computed in practise on pixel-discretized images. It is however possible to compute a regularized derivative, i.e. the derivative of a smoothed signal. For example, let

$$
\begin{equation*}
g(x, y)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \tag{11}
\end{equation*}
$$

be a 2D Gaussian with standard deviation σ, and compute the regularized derivative with respect to x as:

$$
\begin{equation*}
\frac{\partial}{\partial x}(J * g)=\frac{\partial}{\partial x} J * g=J * \frac{\partial}{\partial x} g=J * \frac{-x}{\sigma^{2}} g \tag{12}
\end{equation*}
$$

In other words, if we use the filter $\frac{-x}{\sigma^{2}} g$ to compute the derivative of J with respect to x, we are actually computing the derivative of $J * g$ with respect to x. Therefore, the difference $I-J$ in (10) should in practise be replaced by $I * g-J * g$.

References

[1] Stan Birchfield. Deriviation of Kanade-Lucas-Tomasi tracking equation, 1997. http://www.ces.clemson.edu/~stb/klt/birchfield-klt-derivation.pdf.
[2] B.D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In In Proceedings of Imaging Understanding Workshop, 1981. The original article for KLT, http://cseweb.ucsd.edu/ classes/sp02/cse252/lucaskanade81.pdf.

