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1 Introduction

Below follows a short version of the derivation of the Lucas-Kanade tracker
introduced in [2]. A derivation of a symmetric version can also be found in [1]
(the derivation here is very much inspired from [1], with a few iterative and
practical issues added).

2 Derivation

Define the dissimilarity between two local regions, one in image I and one in
image J :

ε =

∫∫
W

[J(x + d)− I(x)]2w(x)dx (1)

where position is denoted by x = [x, y]T , and displacement by d = [dx, dy]T .
The integration region W is a local region around a pixel. The weighting func-
tion w(x) is usually set to the constant 1, and we will for simplicity ignore the
weight in the derivation from now on. The cost (1) is identical to the equation
given in [2]. Now the Taylor series expansion of J(x + d) about the point x,
truncated to the linear term, is

J(x + d) ≈ J(x) + dx
∂J

∂x
(x) + dy

∂J

∂y
(x) = J(x) + dT∇J(x) , (2)

where ∇J = [∂J∂x ,
∂J
∂y ]T . Therefore (ignoring w),

ε ≈
∫∫

W

[J(x)− I(x) + dT∇J(x)]2dx , and (3)

∂ε

∂d
≈ 2

∫∫
W

[J(x)− I(x) + dT∇J(x)]∇J(x)dx . (4)

To find the displacement d, we set the derivative to zero∫∫
W

[J(x)− I(x) + dT∇J(x)]∇J(x)dx = 0 . (5)
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Rearranging terms, we get∫∫
W

[J(x)− I(x)]∇J(x)dx = −
∫∫

W

∇JT (x)d∇J(x)dx (6)

= −
[∫∫

W

∇J(x)∇JT (x)dx

]
d . (7)

In other words, we must solve an equation of the form

Td = e , (8)

where T is the 2× 2 matrix

T =

∫∫
W

∇J(x)∇JT (x)dx , (9)

and e is the 2× 1 vector

e =

∫∫
W

[I(x)− J(x)]∇J(x)dx . (10)

3 Iteration

The solution to (8) above only approximately minimizes the dissimilarity (1),
since we are using a truncated Taylor expansion. The solution can be improved
by iterative refinement in the following way:

1. Set dtot = 0.

2. Compute T and e in (9) and (10) respectively, and solve (8) to get d.

3. Update dtot ← dtot +d. Compute a new image J(x+dtot) and gradients
∇J(x + dtot) by interpolating the original image J(x) and its gradient
∇J(x).

4. Go back to step 2, using the new data from step 3 instead of the original
J and ∇J .

Iterate until some stop criterion is fulfilled, e.g. maximum number of iterations
or if ‖d‖ is below a certain value.

4 Practical issues

A true derivative cannot be computed in practise on pixel-discretized images.
It is however possible to compute a regularized derivative, i.e. the derivative of
a smoothed signal. For example, let

g(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (11)
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be a 2D Gaussian with standard deviation σ, and compute the regularized
derivative with respect to x as:

∂

∂x
(J ∗ g) =

∂

∂x
J ∗ g = J ∗ ∂

∂x
g = J ∗ −x

σ2
g . (12)

In other words, if we use the filter −x
σ2 g to compute the derivative of J with

respect to x, we are actually computing the derivative of J ∗ g with respect
to x. Therefore, the difference I − J in (10) should in practise be replaced by
I ∗ g − J ∗ g.
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