Solving the Correspondence Problem with RANSAC

Example: estimation of a line from points
Example: estimation of a line from points

Example: estimation of a line from points

[^0] Klas Norrderg

Observations

- We need (in this case!) a minimum of 2 points to determine a line
- Given such a line l, we can determine how well any other point y fits the line l
- For example: distance between y and l
- If we pick 2 arbitrary points from the dataset:
- We can easily determine a line 1
$-l$ is the correct line with some probability $p_{\text {LINE }}$
$-p_{\text {LINE }}$ is related to the chance of picking only inliers
- $p_{\text {LINE }}$ is larger the fewer points that are used to determine 1
- In general: if 1 is the correct line there are more additional points that can be fitted to the line than if 1 is an incorrect line
26 March, 2018
Klas Nordberg

Line estimated from 2 inliers

Basic iteration

1. Pick 2 random points
2. Fit a line l to the points
3. Determine how many other points in the dataset that can be fitted to 1 with some minimal error ϵ.

- This forms the consensus set C

4. If C is sufficiently large, then the fitted line is probably OK. Keep it

Basic algorithm

- Iterate r times

Pick 2 random points
2. Fit a line 1 to the points
3. Form the consensus set C, together with

- Number of points in C
- Matching error ϵ_{c} of the set C relative to the line

4. If the consensus set is sufficiently large, then the fitted line is OK. In particular if N and/or ϵ_{C} is better than the last line that was OK. Then keep it.

- For each iteration, we increase $p_{\text {SUCCESS }}=$ the probability that the correct line has been determined
- We need to iterate sufficiently many time to raise $p_{\text {success }}$ to a useful level

26 March, 2018
Klas Nordberg

RANSAC

- This algorithm is called RANSAC
- RANdom SAmple Consensus
- Published by Fischler \& Bolles in 1981
- "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography". Comm. of the ACM 24: 381-395.
- Several extensions / variations in the literature - Preemptive RANSAC
- PROSAC
- ...

RANSAC

- After r iterations, RANSAC finds a reasonable estimate of the line (i.e. from only inliers) with a probability of p
- 1-p=

P (pick at least one outlier in each iteration) $=$ $\left(1-w^{2}\right)^{r}$

- $\mathrm{p}=1-\left(1-w^{2}\right)^{r}$
- If w is known, we can choose r to make p as large as we want (but not $=1$!)
- Example: $w=0.5$
- $p=0.94$ when $r=10, \quad p=0.99$ when $r=20$

The correspondence problem

- Given a set of interest points in two images, we want to determine correspondences, i.e., pairs of points that correspond to the same 3D point
- If there is a small relative baseline:
- Use tracking (Lucas-Kanade, etc)
- Track POIs in image 1 to their corresponding positions in image 2
- Can be applied to parts an image sequence
- A POI typically disappears after a while in a longer sequence
- Track-retrack
- Remove all POIs that cannot be tracked forward and backward in time over several images

The correspondence problem

- If there are large baseline between the two images, tracking performance degrades
- Another approach is needed

Solving chicken and egg problem?

- Let there be two views with P_{1} points in one view and P_{2} points in the other view
- We don't know which points in the first view that correspond to which points in the other view
- There is a set D of $P_{1} \times P_{2}$ possible correspondences, or tentative correspondences

A chicken and egg problem

Point correspondences can

be determined if we know F

We need correspondin

 points to estimate \mathbf{F}Kas Nordererg

Use RANSAC

- Pick 8 random points from D
- We don't know if they really correspond, but this can be tested:

1. Use the 8-point algorithm to estimate \mathbf{F}
2. Check how well \mathbf{F} matches each pair in D
3. Collect those that fit well into the consensus set C
4. If C is sufficiently large: F is $O K$: keep F and C

- Iterate r times

Probabilities

- Let w be the fraction of inliers in D
- In each iteration we pick N points that are all inliers with probability w^{N} (approximately)
- The probability of not all N points are inliers is then given by $1-w^{N}$
- The probability of not all N points are inliers in r iterations is $\left(1-w^{N}\right)^{r}$
- The probability that in K iteration, at least once, all N points are inliers: $p=1-\left(1-w^{N}\right)^{r}$
- Solve for r :

$$
r=\frac{\log (1-p)}{\log \left(1-w^{N}\right)}
$$

Chicken and egg revisited

- The correct correspondences can be fitted to F, i.e., they satisfy the epipolar constraint for some \mathbf{F} that only depends on which two views are used
- They are the inliers
- The incorrect correspondences are outliers
 Klas Nordberg

\qquad ${ }^{16}$

General observation

- The expected number of iterations, r, to reach a certain probability p is

$$
r=\frac{\log (1-p)}{\log \left(1-w^{N}\right)}
$$

- For fixed p, r is reduced if w is made larger
- For fixed p, r is reduced if N is made smaller

The correspondence problem

- The correspondence problem is often addressed by finding two sets of points that we want to bring into correspondence
- Typically: interest points in images (POI)
- Typically: different number of points in the sets
- Without any outer information:
- Any point in set 1 can correspond to any point in set 2
- In practice, often not a feasible approach!
- Too many outliers (w too small)

The odds are against us

- From the outset, the set of all tentative correspondences between two images can be VERY large ($=P_{1} \times P_{2}$)
- VERY few of these are inliers: w is VERY small
- Here $N=8$
- This means that r must be VERY ${ }^{8}$ large in order to make p close to 1

Visual appearance and RANSAC

- The set of correspondences in D has m possible correspondences and only m_{0} of them are correct ($m-m_{o}$ are incorrect)
- Probability of picking a correct correspondence $w=m_{0} / m$
- If we can reduce the number incorrect correspondences, without removing correct ones, m will decrease while m_{0} is constant
$\Rightarrow w$ increases $\Rightarrow r$ decreases for fixed p

Matching matrix

- Given P_{1} points in image 1 and P_{2} points in image 2
- Form a $P_{1} \times P_{2}$ matching matrix
- Each entry (i, j) is a hypothetical correspondence between point i in image 1 and point j in image 2
- Set entry $(i, j)=$
a matching score between point i and point j
- For each column or row: keep only the largest entry
- Reduces m while keeping m_{0} constant
- w increases $\Rightarrow r$ decreases for fixed p
- Run RANSAC on remaining tentative pairs

Matching matrix

26 March 2018
TS8B15, lecture 11

Matching matrix

- The matching score can be based on similarity of visual appearance or other a priori knowledge about the scene (rather than geometric properties)
- For example
- SIFT features [see previous lecture!]
- MSER [see previous lecture!]
- Color description
- Camera motions in relation to scene depth
- Tracking quality
- The resulting correspondences are referred to as
- Tentative correspondences
- Putative correspondences

Matching matrix

- Threshold the matching scores to remove highprobability outliers and to identify high-probability inliers (two thresholds!)
- Remove high-probability outliers
- High probability inliers means > 50\% probability
- From the original set D of possible correspondences, we have form two sets D_{1} and D_{0} such that
- D_{0} contains the high-probability inliers
- A.k.a. putative correspondences
- D_{1} contains the remaining correspondences that are not high-probability outliers
- $D_{0} \subset D_{1} \subset D$

Visual appearance and RANSAC

- Remove the low-probability correspondences before RANSAC
- Use the RANSAC algorithm for finding corresponding points based on the tentative correspondences
- Use only high-probability inliers (D_{0}) in the initial selection of n points: $w>0.5$
\Rightarrow fewer iterations are needed
- Use medium and high-probability
correspondences $\left(D_{1}\right)$ to form the consensus step \Rightarrow increases the probability of including correct correspondences in the consensus set

E vs. F

- If we estimate \mathbf{F} in each RANSAC iteration, then we need $N=8$ correspondences to determine \mathbf{F}
- If instead \mathbf{E} is determined, it is sufficient with $N=5$ correspondences
- In practice 6, since we get multiple solutions for \mathbf{E}
- If the internal calibration \mathbf{K} is known, we can reduce $r=$ number of RANSAC iterations, by using \mathbf{E} instead of \mathbf{F}

[^0]: 26 March, 2018

