
TSBB15
Computer Vision
Lecture 2
Image Representations



Today’s topics

•  Scale spaces

•  Pyramids

•  Hierarchical representations

•  Representation of uncertainty/ambiguity

–  case study: local orientation representation
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Scale spaces: motivation 1

• Objects at different 
distances have 
different sizes in 
the image plane

• In object detection:

• We want to detect 
them all

• How?
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Example: face 
detection



Scale spaces: motivation 2
– Cameras have limited depth-of-field

– We want our algorithms to robustly deal with  out-
of-focus blur
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Scale spaces: motivation 2

•  Image blur function: image(s)
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Image(s)
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Representation: Scale Space
• Basic idea

– Stack images in a 3D space

– The third axis, s, is called scale

– s = 0 corresponds to the original image

– As s grows, the image becomes more blurred

• Intuitively: s 
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Scale Space
• Notation:

– original image  I0(u,v)

– blurred image  Is(u,v)

• Is = Ts { I0 }

• Ts : transformation that produces Is from I0
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Scale Space Axioms

[Iijima, 1959] specifies properties of Ts:

1. Linear

2. Shift-invariant

3. Semi-group property

4. Scale- and rotation-invariant

5. Maintain positivity

6. Separability (by later authors)
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See video 
on
ScaleSpace



Scale Space
• A1+A2: Ts is a convolution

– original image  I0(u,v)

– blur kernel  gs(u,v)

– The scale space of I0 is given
as the convolution:

In the Fourier domain: F{Is}= Gs ¢ F{I0}
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Gaussian Scale Space
• The remaining axioms lead to a unique formulation of 

Gs as a Gaussian function:

• Separability:
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PDE formulation
• The Gaussian scale space can also be derived as the solution 

to the PDE:

• A.k.a. the diffusion equation

– Compare to the heat equation, where Is(u,v) is the 
temperature at time s in point (u,v), given initial 
temperature I0(u,v)
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PDE formulation

• The change in Is(u,v) when we move only along the 
scale parameter s equals a local second order 
derivative of Is at (u,v)

13

We will return to the PDE formulation
of scale spaces in a later lecture



Implementation of the Gaussian Scale-Space

Different alternatives:

1. In the Fourier domain:

1. 2D Fourier transform

2. Multiplication with Gaussian function

3. Inverse FT

2. Convolution:

3. Integrating Is as a solution of the PDE:
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Representation: Scale Pyramid
• Blurring (LP-filtering) reduces high 

frequencies
• At some scale s0: frequencies over ¼/2

are sufficiently attenuated to allow
down-sampling with a factor 2 without
much aliasing

• At scale 2s0 we can down-sample the 
image with a factor 4, etc.
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Gaussian Pyramid
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Example
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Scale Pyramid: Applications
•  Used widely in Computer Graphics for texture 

resampling (called MIP maps)
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Texture without MIP map Texture with MIP map



Scale Pyramid: Applications
•  Also very common in motion analysis

• Multi-resolution processing

– Face detection!
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We will return to scale pyramids in later
Lectures on motion analysis



Laplacian Pyramid
• From a Gaussian pyramid, we can compute a 

Laplacian pyramid.

• Each level (scale) in a Laplacian pyramid is given as 
the difference between two levels of a Gaussian 
pyramid at the same grid size.

– The coarser level needs to be up-sampled!

– Or use the LP-filtered version of the finer scale!

• The Laplacian pyramid contains no information 
about the DC-component of the image
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Estimation: Laplacian Pyramid 21
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Example 22



Completeness: Laplacian Pyramid
• The original image can be reconstructed from its 

Laplacian pyramid together with the coarsest level of 
its Gaussian pyramid

• How?
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2D DWT, Example

• Another similar approach to scale spaces can be 
based on DWT
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Analysis using scale hierarchies

• Scale-spaces, G/L-pyramids and DWT are examples 
of scale hierarchies

• Enables analysis of image features at different 
resolutions

–  Example: translations over different distances.

• Same or different analysis can be applied on each 
scale level

• Scaling of pixel coordinates between different levels!
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Multi-resolution processing
• Apply the same operation, e.g., for object detection, on all 

levels of a scale pyramid

– Can be done in parallel

– Collect all detections from all levels as distinct objects

– The level where a detection was made indicates the “size” of 
the object

• If each level is down-sampled a factor 2:

– Time for searching over scale is bounded by a factor (1 + ¼ 
+ (¼)2 + …) = 4/3
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Example: face detection



Coarse-to-fine search/detection
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Start search at coarsest scale. 
Fast, but might fail: better to get 
some false detections than miss 

some correct ones

Here we find three
potential objects which

can be investigated
at the next finer scale

At the next finer scale, only 
regions found before are 

analysed.  Now at a better 
resolution, some false detections 

can be removed

Only two potential
objects remain here and
are further investigated

at the finest scale

The processing is
limited to those

parts which remain
after the processing

at scale 1

Only those objects
remain which have

have been confirmed
at all scales

Finest 
scale

Intermediate 
scale

Coarsest 
scale



Coarse-to-fine refinement
• A similar, processing scheme is the following:

– Estimate a local feature at the coarsest scale first
• Little data – fast processing
• Coarse scale – inaccurate

– The coarse estimate of the feature is then up-sampled 
to the size of the second coarsest scale, where the 
estimate is refined

– The refinement is based on estimating the refinement 
of the coarsest estimate by analyzing the image at the 
second coarsest scale.

– The refinement estimate is then up-sampled and 
refined again.

– By repeating this procedure, we obtain a very accurate 
estimate of the feature at the finest scale.

• Example: estimation of local velocity or disparity
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Coarse-to-fine refinement
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Example: Depth from stereo
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Compute a scale 
hierarchy. Start estimating 
disparity at the coarsest 
level, and refine

Images from Wallenberg & Forssén:
Teaching Stereo Perception 
to YOUR Robot, BMVC 2012 



Example: C2F Stereo disparity 31



Example: C2F Stereo disparity 32



Example: C2F Stereo disparity 33



Example: C2F Stereo disparity 34



Example: C2F Stereo disparity 35



Example: C2F Stereo disparity 36



Images

• An image typically represents, at each position p=(u,v) 
a measurement of 

– Light intensity

– Color

– Absorption (X-ray)

– Reflection (Ultrasonic)

– Hydrogen content (MRI)

• All these represent physical phenomena

• All these can be input to a scale hierarchy

37



Feature image

• The value at position p=(u,v) can also be used to 
represent a local image feature

• May not have a direct physical interpretation

– Local mean or variance (scalars)

– Local edge presence (binary)

– Local gradient (a vector)

– Local orientation (to be discussed)

– Local curvature (to be discussed)

– Interest points (to be discussed)
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Edge representation
39

Canny

Orient



Notes on Representations
• If a local feature can be assumed to be constant in a 

neighborhood, it is desirable that its representation can 
be locally averaged

– The averaged representation = the feature mean

– Noise in the signal results in noise in the estimate of 
the feature representation

– By low-pass filtering the representation (local mean 
value), the noise is reduced

– In general: intensity changes faster than orientation
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Orient LP-filter



Confidence measure

• Feature representations should contain a confidence 
measure (or variance estimate), separated from the 
feature estimate itself

– Measures how confidence of the feature estimate

– For example: in the range [0, 1]

• Value 0: no confidence, value 1: max confidence

• The confidence can be used to weight the feature 
representation when estimating the mean value

– Normalized convolution!
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Model-Based Processing

• Orientation images can be used to control the 
processing of an image 

• Example: adaptive image enhancement
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Original im.

Estimation of
local orientation

Apply a
filter that locally
depends on the
local orientation

Described in a lecture in VT2 !



Orientation images
Applications
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Original image

Orientation image

Curvature
Interest points

Tracking
Image enhancement

LP-filtering

Methods for Tracking 
and Image 
enhancement are 
described in later 
lectures



Representation of Local Orientation: Angle

• Signal model: simple signal (i1D, lecture 1)

• In a local region of each image point:

– measure an angle α, e.g. between the vertical axis 
and the lines of constant signal intensity, e.g. in the 
interval 0 to 180˚

• Average-able?

– No! (why?)

• Confidence measure?

• How to extend to 3D?
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Estimation of Local Orientation: Gradient

• In each point we measure the local gradient of the 
signal (e.g. using a Sobel-operator)

• Issues:

– For an i1D signal, the sign of the gradient depends 
on where we do the measurement

– The gradient might be = 0 
at certain lines of the 
i1D signal

– Confidence measure?
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Representation of Local Orientation:
Double angle vector

• Alternative: double the angle to 2α, which lies in the 
interval 0 to 360˚

• Form a 2D vector v which points with the angle 2α

• Let the norm of v represent the confidence measure

• Called: double-angle representation of local 2D 
orientation
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Representation of Local Orientation

• The double-angle representations of two 
similar orientations are always similar
(continuity results in compatibility)

• Two orientations which differ
most (90˚) are always
represented by vectors that
point in opposite directions 
(complementarity)
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Colour coding of the double angle representation
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Representation of Local Orientation
• Double-angle representations of local 2D orientations 

can be averaged

– The averaged representation = the feature mean

• Averaging of vectors is automatically weighted with 
the confidences

In later lectures:

• How to estimate the double-angle representation 
from image data?

• What to do in 3D?

49



Representation of Local Orientation

• Signal model for simple (i1D) signal at point p

• I is the local signal (2 or more dimensions)

• g is the 1D function that defines the variations 
of the i1D signal

• x is a deviation from position p

• n is a vector that defines the orientation

• BUT: the direction (sign) of n is not unique
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Representation of Local Orientation: Tensor

• The double-angle vector v becomes

• λ is a scalar which gives the confidence
• Alternative: form a 2 x 2 symmetric 

matrix

• Tensor representation of local 
orientation
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Representation of Local Orientation
• Tensor components

• Vector components

• The tensor contains one more element than v 
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Representation of Local Orientation
• n is an eigenvector of T with eigenvalue λ

• T (but not v) can be defined for any dimension of 
signals (3D, 4D, ...)

• How to estimate v and T from signals?
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Tensor or Matrix?

• In this course, the term tensor is used as 
synonym for symmetric matrix.

• Why tensor and not matrix?
– A matrix is just a representation, consisting 

of a container with numbers in a table. 
– A tensor can be represented as a matrix but it 

must furthermore obey certain laws under 
transformations of the coordinate system.

– Note the different use in Deep Learning

54



Super-pixels
55

Examples from 
Achanta et al, 
(SLIC)

Showing different 
sizes of the 
clusters

Also known as:
Over-
segmentation



Super-pixels
• The array/matrix representation of an image implies that, in 

principle, each pixel must be examined in order to extract 
information about the image

• An alternative to the array/matrix representation is to cluster 
neighboring pixels with similar values to super-pixels

– Often with restrictions on the cluster: size, shape

• Each super-pixel is represented as the common value and a 
cluster of pixels

• The image is represented as the set of its super-pixels

• Normal image: approx. 1 M pixels

• Super-pixels image:  approx. 1 k super-pixels
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Super-pixels

Typical approach:

• Initialize a regular grid of “square” super-pixels

• Iteratively modify each super-pixel to increase 
homogeneity regarding its corresponding pixel values

– Split super-pixels into smaller ones if necessary

– Merge similar super-pixels if possible

– Move pixels from one super-pixel to a neighboring 
one to improve super-pixel shape
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