TSBB15

Computer Vision

Lecture 4
Motion estimation and optical flow

Motion

In many applications it is the case that

- the scene depicted in the image is dynamic
- moving objects
- deformable objects
- or the camera is moving relative to the scene
- in general: both cases

Motion

- From the camera's (viewer's) perspective these two cases are indistinguishable
- Unless a high-level interpretation of the scene is available
- However, we can describe how points in the scene move relative to some reference frame, e.g., as defined by the camera

The motion field

The motion field is the projection of the 3D motion onto the image plane

It can be represented as a vector valued
function of the image coordinate
$m(x)$

The motion field

- If we can measure the motion field $\mathbf{m}(\mathbf{x})$ it is possible to infer
- how points and objects are moving relative the camera, or
- how the camera is moving relative to the scene (ego-motion estimation)

The motion field

- In practice, we cannot measure $\mathbf{m}(\mathbf{x})$ directly
- However, we can measure how the image intensity moves/varies over time
- Optical flow Will be formally defined shortly
- But there is no direct relation between the optical flow and the motion field
- 3D motion may not always generate temporal variations in the image
- 3D points that move along the projection lines have constant positions in the image
- Temporal variations in the image may not always correspond to 3D motion

Physical vs visual motion

b

From Jähne \& Haussecker

Displacement estimation

- One approach to motion estimation considers two images of the same scene, e.g.
- Taken at two different time points, same camera position
- Images from a video sequence, e.g., two consecutive images. Displacement is an estimate of the motion field $\mathbf{m}(\mathbf{x})$
- Taken from two different position, possibly at the same time point
- Stereo images. Displacement is an estimate of depth in the scene (assuming a stationary scene)

Example (from Middlebury)

Mathematical model

- Assumption:

$$
J(\mathbf{x})=I(\mathbf{x}+\mathbf{d}) \quad \text { for all } \mathbf{x} \in \Omega
$$

- Pixel values are constant, but displaced by d
- How can we determine \mathbf{d} for each point \mathbf{x} ?

Estimation of \mathbf{d}

- d, at point \mathbf{x}, can be estimated by forming a cost function, based on the constancy of the pixel values:

$$
\begin{aligned}
& \epsilon=\int_{\Omega_{0}} w(\mathbf{y})(I(\mathbf{x}+\mathbf{y}+\mathbf{d})-J(\mathbf{x}+\mathbf{y}))^{2} d \mathbf{y} \\
& \begin{array}{l}
\text { A region of the } \\
\text { origin, same size as } \Omega
\end{array} \\
& \begin{array}{l}
\text { A weighting function, e.g., a } \\
\text { Gaussian, of same size as } \Omega
\end{array} \\
& \hline
\end{aligned}
$$

- The minimizer of ϵ is an estimate of \mathbf{d} at \mathbf{x}, which we then use as an estimate of $\mathbf{m}(\mathbf{x})$

Estimation of \mathbf{d}

- As an estimate of $\mathbf{m}(\mathbf{x}), \mathbf{d}(\mathbf{x})$ is referred to as optic flow (or optical flow)
- Finding the minimizer of ϵ is a non-linear estimation problem
- Computationally complex problem
- It can be simplified by a linearization of I

Linearization of $/$

- At each point $\mathbf{x}+\mathbf{y}$, the dependency on \mathbf{d} in the intensity function I can be expressed as a Taylor expansion:

$$
\left.\begin{array}{r}
\nabla I(\mathbf{x}+\mathbf{y})=\left(\frac{\partial I}{\partial u}\right. \\
\frac{\partial v}{\partial v}
\end{array}\right)=\text { Image gradient at } \mathbf{x}+\mathbf{y}, ~(\mathbf{y})(\mathbf{x}+\mathbf{y}) \cdot \mathbf{d} .
$$

- Assumption: higher order terms in \mathbf{d} can be neglected

Linear estimation of \mathbf{d}

With this linearlization of I at hand:

$$
\begin{aligned}
& \epsilon=\int_{\Omega_{0}} w(\mathbf{y})(I(\mathbf{x}+\mathbf{y})-J(\mathbf{x}+\mathbf{y})+ \frac{\nabla I(\mathbf{x}+\mathbf{y}) \cdot \mathbf{d})^{2}}{\uparrow} d \mathbf{y} \\
& \frac{\partial I}{\frac{\partial u}{} v_{1}+\frac{\partial I}{\partial v} v_{2}}
\end{aligned}
$$

- We want to find the minimum of ϵ with respect to the elements of $\mathbf{d}=\left(v_{1}, v_{2}\right)$
- Find d where

$$
\binom{\frac{\partial \epsilon}{\partial v_{1}}}{\frac{\partial \epsilon}{\partial v_{2}}}=\mathbf{0}
$$

Determining d

$$
\begin{aligned}
& \binom{\frac{\partial \epsilon}{\partial t_{t}}}{\frac{\partial t}{\partial v_{2}}}=\binom{2 \int_{\Omega_{0}} w(\mathbf{y})(I(\mathbf{x}+\mathbf{y})-J(\mathbf{x}+\mathbf{y})+\nabla I(\mathbf{x}+\mathbf{y}) \cdot \mathbf{d}) \frac{\partial I}{\partial u} d \mathbf{y}}{2 \int_{\Omega_{0}} w(\mathbf{y})(I(\mathbf{x}+\mathbf{y})-J(\mathbf{x}+\mathbf{y})+\nabla I(\mathbf{x}+\mathbf{y}) \cdot \mathbf{d}) \frac{\partial I}{\partial v} d \mathbf{y}} \\
& \Downarrow \\
& \int_{\Omega_{0}} w(\mathbf{y})\left(\frac{\partial I}{\frac{\partial y}{\partial v}}\left(I I(\mathbf{x}+\mathbf{y})-J(\mathbf{x}+\mathbf{y})+\nabla^{\mathrm{T}} I(\mathbf{x}+\mathbf{y}) \mathbf{d}\right) d \mathbf{y}=\binom{0}{0}\right.
\end{aligned}
$$

The Lucas-Kanade equation

Assumption: \mathbf{d} is constant within Ω, i.e., \mathbf{d} is independent of \mathbf{y}

This is the Lucas-Kanade equation (LK-equation).
One equation per pixel in the image (gives one d per pixel)

Determining d

- In principle, \mathbf{d} can be determined from the LK-equation as

$$
d=T^{-1} s
$$

- Only works if \mathbf{T} is not singular, i.e., I in Ω must not be ind
- Lucas \& Kanade: An Iterative Image Registration Technique with an Application to Stereo Vision, IUW, 1981

Alternative derivation of LK

- The LK-equation derived here is based on finding the local displacement between two images
- An alternative derivation is provided by the brightness constancy principle

Brightness constancy

- Think of the intensity function I as explicitly depending on the 3 variables (u, v, t)
- Basic assumption:
- If we observe intensity I at (u, v, t), this intensity remains constant over time, but it may change position as a function of time
- This is referred to as: brightness constancy

Mathematical formulation

Means: the total derivative of I w.r.t. t is $=0$

$$
\frac{d I}{d t}=0
$$

Expand in partial derivatives of I :

$$
\frac{\partial I}{\partial t} \frac{d t}{d t}+\frac{\partial I}{\partial u} \frac{d u}{d t}+\frac{\partial I}{\partial v} \frac{d v}{d t}=0
$$

Mathematical formulation

Cont.

$$
\frac{\partial I}{\partial t} \underbrace{\frac{d t}{d t}}_{=1}+\frac{\partial I}{\partial u} \underbrace{\frac{d u}{d t}}_{=v_{1}}+\frac{\partial I}{\partial v} \underbrace{\frac{d v}{d t}}_{=v_{2}}=0
$$

- $\mathbf{v}=\left(v_{1}, v_{2}\right)$ is the velocity vector of the intensity I at (u, v, t)
- \mathbf{v} is a function of $(u, v, t), \mathbf{v}=\mathbf{v}(\mathbf{x})$
- Local estimate of the motion field $\mathbf{m}(\mathbf{x})$

BCCE / Optic flow equation

Cont. $\quad \frac{\partial I}{\partial t}+\frac{\partial I}{\partial u} v_{1}+\frac{\partial I}{\partial v} v_{2}=0$

$$
\begin{aligned}
& \text { Alternative } \\
& \frac{\partial I}{\partial t}+\nabla I \cdot \mathbf{v}=0
\end{aligned}
$$

- This is the

Brightness Constancy Constraint Equation (BCCE)

- A.k.a. the optic (optical) flow equation

BCCE

- Is a differential equation
- It assumes that we can determine/estimate the temporal derivative of I at (u, v, t)
- In practice, it must be estimated in terms of finite differences
- Compare to the two-image derivation of the LK-eq
- BCCE is one equation per pixel (and time)
- But it has 2 unknowns: $\left(v_{1}, v_{2}\right)$
- Cannot be solved at the pixel level

Determining \mathbf{v}

- At a pixel $\mathbf{x}=(u, v)$, at time t, we can formulate a cost function

$$
\epsilon=\int_{\Omega_{0}} w(\mathbf{y})\left(\frac{\partial I}{\partial t}+\nabla I(\mathbf{x}+\mathbf{y}) \cdot \mathbf{v}\right)^{2} d \mathbf{y}
$$

- Assumes that \mathbf{v} is constant within Ω
- This cost function is very similar to the one used for the 2-image case, Equation (A), slide 14

LK-equation, again...

- Minimizing ϵ, therefore, implies finding \mathbf{v} such that

$\mathbf{T} \mathbf{v}=\mathbf{s}$

Continuoustime LK-eq

- Where

$$
\begin{aligned}
& \mathbf{T}(\mathbf{x})=\int_{\Omega_{0}} w(\mathbf{y}) \nabla I(\mathbf{x}+\mathbf{y}) \nabla^{\mathrm{T}} I(\mathbf{x}+\mathbf{y}) d \mathbf{y} \\
& \mathbf{s}(\mathbf{x})=-\int_{\Omega_{0}} w(\mathbf{y}) \frac{\partial I}{\partial t} \nabla I(\mathbf{x}+\mathbf{y}) d \mathbf{y}
\end{aligned}
$$

The aperture problem

- Regardless of how the LK-eq has been derived, it cannot be solved robustly for pixels where I in Ω is i1D
- Even approximately i1D may cause problems
- This is related to the so-called aperture problem:
- In a inD region we cannot determine the local displacement/velocity along a line/edge

The aperture problem

- Is the pattern in the circle moving down, right, or right-down?

0

- Since the pattern is i1D, its velocity cannot be completely determined
- We can, however, determine a unique normal velocity
- How?

BCCE revisited

- A consequence of BCCE:

In the 3D spatio-temporal volume, I must be constant in a direction given by $\mathbf{v}_{\mathrm{ST}}=\left(v_{1}, v_{2}, 1\right)$

- This implies that $\nabla_{\mathrm{ST}} I$, the 3D spatio-temporal gradient of I, is orthogonal to $\mathbf{v}_{\text {ST }}$

Example

Time

Horisontal
position

A new cost function

- We define a new cost function $\varepsilon_{\mathrm{ST}}$ as

$$
\epsilon_{\mathrm{ST}}=\int_{\Omega_{0}} w(\mathbf{y})\left(\hat{\mathbf{v}}_{\mathrm{ST}}^{\mathrm{T}} \nabla_{\mathrm{ST}} I\right)^{2} d \mathbf{y}
$$

where

$$
\hat{\mathbf{v}}_{\mathrm{ST}}=\left(\begin{array}{c}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right), \quad\left\|\hat{\mathbf{v}}_{\mathrm{ST}}\right\|=1, \quad \nabla_{\mathrm{ST}} I=\left(\begin{array}{c}
\frac{\partial I}{\partial x_{1}} \\
\frac{\partial I}{\partial x_{2}} \\
\frac{\partial I}{\partial x_{3}}
\end{array}\right)
$$

Spatio-temporal motion vector

- $\hat{\mathbf{v}}_{\mathrm{ST}}\left(\right.$ and \mathbf{v}_{ST}) is called the spatio-temporal motion vector (it is 3-dimensional)
- $\nabla_{\mathrm{ST}} I$ is the spatio-temporal gradient of I (also 3dimensional)
- We will minimize $\varepsilon_{S T}$ over $\hat{v}_{S T}$, with the additional constraint

$$
\left\|\widehat{\mathbf{v}}_{\mathrm{ST}}\right\|=1
$$

- This is a total least squares formulation of how to determine $\mathbf{v}(\mathbf{x})$

Finding the minimum of $\varepsilon_{\mathrm{ST}}$

- The constraint can be expressed as

$$
c=\left\|\widehat{\mathbf{v}}_{\mathrm{ST}}\right\|^{2}=r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=1
$$

- The solution is given by $\hat{\mathrm{v}}_{\mathrm{ST}}=\left(r_{1}, r_{2}, r_{3}\right)$ that satisfies

$$
\begin{aligned}
& \qquad \frac{\partial}{\partial r_{k}} \varepsilon=\lambda \frac{\partial}{\partial r_{k}} c \quad \begin{array}{l}
\text { Lagrange's method } \\
\text { for minimisation with } \\
\text { constraints }
\end{array} \\
& \text { for } k=1,2,3 \text { (why?) }
\end{aligned}
$$

The 3D structure tensor revisited

- These 3 equations can be rewritten as
$\left[\int_{\Omega} w(\mathbf{x}) \nabla_{S T} I \nabla_{S T}^{T} I d \mathbf{x}\right] \widehat{\mathbf{v}}_{S T}=\lambda \widehat{\mathbf{v}}_{S T}$ (why?)
- Note that the expression inside the bracket is a 3D structure tensor!

The 3D structure tensor revisited

- We rewrite this as

$$
\mathbf{T}_{3 \mathrm{D}} \hat{\mathbf{v}}_{S T}=\lambda \hat{\mathbf{v}}_{S T}
$$

- This means that the $\hat{\mathrm{v}}_{\mathrm{ST}}$ which minimizes ε must be an eigenvector of $\mathbf{T}_{3 \mathrm{D}}$
- It should also be normalized: $\left\|\hat{\mathbf{v}}_{\mathrm{ST}}\right\|=1$
- The eigenvector that minimizes ε is the one of smallest eigenvalue (why?)

The 3D structure tensor revisited

- Once $\hat{\mathbf{v}}_{\mathrm{ST}}=\left(r_{1}, r_{2}, r_{3}\right)$ has been determined we can find \mathbf{v}_{ST} that is
- Parallel to $\hat{\mathbf{v}}_{\mathrm{S}}$
- Has its last component = 1
- The first two components of $\mathbf{v}_{\text {ST }}$ are the motion vector $\mathbf{v}=\left(v_{1}, v_{2}\right)$

$$
v_{1}=\frac{r_{1}}{r_{3}} \quad v_{2}=\frac{r_{2}}{r_{3}}
$$

Summary

- We now have 2 alternatives to local motion estimation based on BCCE:

1. least squares minimization
(based on $\mathbf{T}_{2 \mathrm{D}}$ and \mathbf{s})
2. total least squares minimization (based on $\mathbf{T}_{3 \mathrm{D}}$)

Summary: Least squares minimization

- Minimize

$$
\varepsilon_{S T}=\int_{\Omega} w(\mathbf{x})\left[\mathbf{v}_{S T} \cdot \nabla_{3} I\right]^{2} d \mathbf{x}
$$

where $\mathbf{v}_{\mathrm{ST}}=\left(v_{1}, v_{2}, 1\right)$ over the motion components $\mathbf{v}=\left(v_{1}, v_{2}\right)$

- Find \mathbf{v} by solving $\mathbf{T}_{2 \mathrm{D}} \mathbf{v}=\mathbf{s}$
- We can see $\mathbf{v}_{\text {ST }}$ as a homogeneous representation of \mathbf{v}

Summary: Total least squares minimization

- Minimize

$$
\varepsilon_{S T}=\int_{\Omega} w(\mathbf{x})\left[\widehat{\mathbf{v}}_{S T} \cdot \nabla_{3} I\right]^{2} d \mathbf{x}
$$

over all components of $\hat{\mathbf{v}}_{\mathrm{ST}}=\left(r_{1}, r_{2}, r_{3}\right)$ and with the constraint $\left\|\hat{\mathbf{v}}_{\text {ST }}\right\|=1$

- Find $\hat{\mathrm{v}}_{\mathrm{ST}}$ as the eigenvector of smallest eigenvalue with respect to $\mathbf{T}_{3 \mathrm{D}}$
- Find \mathbf{v} from $\hat{\mathbf{v}}_{\text {ST }}$ as $\quad v_{1}=\frac{r_{1}}{r_{3}} \quad v_{2}=\frac{r_{2}}{r_{3}}$

The 3D tensor

- In the 3D case, we compute a structure tensor $\mathbf{T}_{3 \mathrm{D}}$, a symmetric 3×3 matrix, that can be decomposed as (the spectral theorem)
$\mathbf{T}_{3 \mathrm{D}}=\lambda_{1} \widehat{\mathbf{e}}_{1} \widehat{\mathbf{e}}_{1}^{T}+\lambda_{2} \widehat{\mathbf{e}}_{2} \hat{\mathbf{e}}_{2}^{T}+\lambda_{3} \widehat{\mathbf{e}}_{3} \widehat{\mathbf{e}}_{3}^{T}$
where $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq 0$ are the eigenvalues of $\mathbf{T}_{3 \mathrm{D}}$ and $\hat{\mathbf{e}}_{k}$ are the corresponding eigenvectors (an orthonormal set)

The 3D structure tensor

- In general (not only in the case of motion) we can distinguish between three cases of the local 3D signal
- The signal is constant on parallel planes (i1D)
- The signal is constant on parallel lines (i2D)
- The signal is isotropic
- Remember that \mathbf{T} is formed as

$$
\mathbf{T}(\mathbf{x})=\int_{\Omega_{0}} w(\mathbf{y}) \nabla I(\mathbf{x}+\mathbf{y}) \nabla^{\mathrm{T}} I(\mathbf{x}+\mathbf{y}) d \mathbf{y}
$$

The signal is constant on parallel planes

- (Case 1) The 3D signal is i1D (Lasagna)
- The gradient $\nabla_{3} I$ is always parallel to the normal vector of the planes

$$
\mathbf{T}=\lambda_{1} \widehat{\mathbf{e}}_{1} \widehat{\mathbf{e}}_{1}^{T}
$$

- Thas rank 1

$-\hat{\mathbf{e}}_{1}$ is a normal vector to the planes
- A moving 2D line generates a 3D signal that is i1D $\Rightarrow \mathbf{T}$ has rank 1

The signal is constant on parallel planes

- In this case, the Fourier transform of I is concentrated along a line through the origin, in the direction of $\hat{\mathbf{e}}_{1}$

The signal is constant on parallel lines (Spaghetti)

- (Case 2) The 3D signal is intrinsic 2D (i2D)
- The gradient $\nabla_{3} I$ is always perpendicular to the direction $\hat{\mathbf{e}}_{3}$ of the lines
$\mathbf{T}=\lambda_{1} \widehat{\mathbf{e}}_{1} \widehat{\mathbf{e}}_{1}^{T}+\lambda_{2} \widehat{\mathbf{e}}_{2} \widehat{\mathbf{e}}_{2}^{T}$
$-\hat{\mathbf{e}}_{3}$ is an eigenvector of eigenvalue o relative to \mathbf{T}
- T has rank 2
- A moving point generates a 3D signal that is i2D $\Rightarrow \mathbf{T}$ has rank 2

The signal is constant on parallel lines

- In this case, the Fourier transform of I is concentrated to a plane through the origin, that has $\hat{\mathbf{e}}_{3}$ as its normal vector
- In other words, the plane is spanned by $\hat{\mathbf{e}}_{1}$ and $\hat{\mathbf{e}}_{2}$

The signal is isotropic (Dumpling)

- (Case 3) The signal varies uniformly in all directions
- The gradient $\nabla_{3} I$ is not restricted to some subspace $\mathbf{T}=\lambda_{1} \widehat{\mathbf{e}}_{1} \widehat{\mathbf{e}}_{1}^{T}+\lambda_{2} \widehat{\mathbf{e}}_{2} \widehat{\mathbf{e}}_{2}^{T}+\lambda_{3} \widehat{\mathbf{e}}_{3} \widehat{\mathbf{e}}_{3}^{T}$ where λ_{1}, λ_{2} and λ_{3} all are $\neq 0$.
- Thas rank 3
- Not consistent with the BCCE

The signal is isotropic

- In the isotropic case, variations in all directions are uniformly distributed
- Implies that $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda$
- We can write $\mathbf{T}=\lambda \mathbf{I}$ (\mathbf{I} is the identity tensor)
- The Fourier transform of the signal extends into all 3 dimensions

Confidence measures

- As confidence measures for the three cases we can use, for example:

$$
\begin{array}{rlr}
c_{1}=\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}} & \text { Case 1 } \\
c_{2}=\frac{\lambda_{2}-\lambda_{3}}{\lambda_{1}} & \text { case 2 } \\
C_{3}=\frac{\lambda_{3}}{\lambda_{1}} & \text { case 3 }
\end{array}
$$

Confidence measures

- They satisfy $c_{1}+c_{2}+c_{3}=1$.
- Furthermore
- i1D-signal $\Rightarrow \mathbf{T}$ has rank $1 \Rightarrow$

$$
\lambda_{1}>\mathrm{o}, \lambda_{2}=\lambda_{3}=\mathrm{o} \Rightarrow \mathrm{c}_{1}=1, \mathrm{c}_{2}=\mathrm{c}_{3}=\mathrm{o}
$$

- i2D-signal $\Rightarrow \mathbf{T}$ has rank $2 \Rightarrow$

$$
\lambda_{1} \geq \lambda_{2}>\mathrm{o}, \lambda_{3}=\mathrm{o} \Rightarrow \mathrm{c}_{2} \neq \mathrm{o}, \mathrm{c}_{3}=\mathrm{o}
$$

- Isotropic signal $\Rightarrow \mathbf{T}$ has rank $3 \Rightarrow c_{3} \neq 0$.

Decomposing \mathbf{T}

- Based on these confidence measures, T can be decomposed as

$$
\begin{aligned}
\mathbf{T}= & \lambda_{1} \widehat{\mathbf{e}}_{1} \widehat{\mathbf{e}}_{1}^{T}+\lambda_{2} \hat{\mathbf{e}}_{2} \hat{\mathbf{e}}_{2}^{T}+\lambda_{3} \widehat{\mathbf{e}}_{3} \hat{\mathbf{e}}_{3}^{T} \\
= & \left(\lambda_{1}-\lambda_{2}\right) \hat{\mathbf{e}}_{1} \widehat{\mathbf{e}}_{1}^{T}+ \\
& +\left(\lambda_{2}-\lambda_{3}\right)\left(\widehat{\mathbf{e}}_{1} \widehat{\mathbf{e}}_{1}^{T}+\widehat{\mathbf{e}}_{2} \widehat{\mathbf{e}}_{2}^{T}\right)+ \\
& +\lambda_{3}\left(\widehat{\mathbf{e}}_{1} \widehat{\mathbf{e}}_{1}^{T}+\widehat{\mathbf{e}}_{2} \widehat{\mathbf{e}}_{2}^{T}+\widehat{\mathbf{e}}_{3} \widehat{\mathbf{e}}_{3}^{T}\right) \\
= & \lambda_{1}\left[c_{1} \mathbf{T}_{\text {rang } 1}+c_{2} \mathbf{T}_{\text {rang } 2}+c_{3} \mathbf{I}\right]
\end{aligned}
$$

Summary

- Given a local picture of the signal:
- The directions along which the signal is constant correspond to the null space of \mathbf{T}
- T has a range that is orthogonal to this null space
- In the Fourier domain: the energy is concentrated to the range of \mathbf{T}

Summary

- The rank of \mathbf{T} equals the dimension of its range
- The range represent the dimensions in the Fourier domain where there is energy
- We can define confidence measures (in various ways) that indicate which rank or case that \mathbf{T} represents
- In general, \mathbf{T} can be a combination of the different cases

Computation of the motion vector (rank 2)

- At each point $\left(x_{1}, x_{2}, t\right)$ we can estimate the local 3D structure tensor \mathbf{T}
- If \mathbf{T} has rank 2 it corresponds to a non-i1D signal in the 2D image
- Since \mathbf{T} has rank 2 we can "uniquely" determine an eigenvector of smallest eigenvalue:

$$
\hat{\mathbf{v}}_{\mathrm{ST}}=\left(\begin{array}{lll}
r_{1} & r_{2} & r_{3}
\end{array}\right)
$$

Computation of the motion vector (rank 2)

- From the previous derivations we know that

$$
\hat{\mathbf{v}}_{\mathrm{ST}} \sim \mathbf{v}_{\mathrm{ST}}=\left(v_{1} v_{2} 1\right)
$$

- Consequently, we can compute the motion components as

$$
v_{1}=\frac{r_{1}}{r_{3}} \quad v_{2}=\frac{r_{2}}{r_{3}}
$$

Computation of the motion vector (rank 1)

- If T has rank 1 it means that the corresponding 2Dsignal is i1D
- A moving line or edge
- The null space of \mathbf{T} is 2-dimensional
- We cannot uniquely determine \mathbf{v}_{ST}, and therefore \mathbf{v} cannot be uniquely determined
- Related to the aperture problem

Computation of the motion vector (rank 1)

- However, in this case we can determine the normal motion of the 2D-signal
- Let $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}\right)$ be an eigenvector of largest eigenvalue relative to \mathbf{T}

Computation of the motion vector (rank 1)

- The spatio-temporal normal motion vector $\mathbf{v}_{\text {ST }}$ must satisfy

$$
\begin{aligned}
& \mathbf{p}^{T} \mathbf{v}_{S T}=0 \\
& p_{1} v_{1}+p_{2} v_{2}+p_{3}=0 \\
& \mathbf{v}=\binom{v_{1}}{v_{2}}=\kappa\binom{p_{1}}{p_{2}}
\end{aligned}
$$

Computation of the motion vector (rank 1)

- From these two relations, the normal motion is given as
$\operatorname{vnorm}=\binom{v_{1}}{v_{2}}=-\frac{p_{3}}{p_{1}^{2}+p_{2}^{2}}\binom{p_{1}}{p_{2}}$

Computation of the motion vector (rank 3)

- Finally, if \mathbf{T} has rank 3 this implies that the local signal does not satisfy the conditions expressed in BCCE. (why?)

A strategy for motion estimation

- Compute the 3D tensor \mathbf{T}_{3}
- Determine its eigenvalues
- Classify the tensor into each of the three cases, based on some confidence measures (how?)
- If rank 1: compute the normal motion
- If rank 2: compute the "true" motion
- If rank 3: no motion can be determined

