TSBB15 Computer Vision

A comment on the 7-point algorithm
Mårten Wadenbäck
Datorseende
Institutionen för systemteknik

Parametrisation of \mathbf{F}

The nullspace of the 7×9 data matrix is spanned by two vectors $\mathbf{f}_{1}, \mathbf{f}_{2} \in \mathbb{R}^{9}$, which can be reshaped into matrices $\mathbf{F}_{1}, \mathbf{F}_{2} \in \mathbb{R}^{3 \times 3}$. The fundamental matrix \mathbf{F} should be a linear combination of these.

Parametrisation of \mathbf{F}

The nullspace of the 7×9 data matrix is spanned by two vectors $\mathbf{f}_{1}, \mathbf{f}_{2} \in \mathbb{R}^{9}$, which can be reshaped into matrices $\mathbf{F}_{1}, \mathbf{F}_{2} \in \mathbb{R}^{3 \times 3}$. The fundamental matrix \mathbf{F} should be a linear combination of these.

As an alternative to the form given in the lecture, we can use

$$
\mathbf{F}=\mathbf{F}_{1}+\alpha \mathbf{F}_{2}
$$

This has the advantage of being related to generalised eigenvalue problems, which makes it easier to solve the polynomial equation $\operatorname{det}\left(\mathbf{F}_{1}+\alpha \mathbf{F}_{2}\right)=0$.

Generalised eigenvalue problems

For $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), the linear matrix pencil $\mathbf{A}-\lambda \mathbf{B}$ arises in relation to the generalised eigenvalue problem

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{B} \mathbf{v}, \quad \lambda \in \mathbb{C}, \quad \mathbf{v} \neq \mathbf{0}
$$

(Ordinary eigenvalue problems are special cases where $\mathbf{B}=\mathbf{I}$.)

Generalised eigenvalue problems

For $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), the linear matrix pencil $\mathbf{A}-\lambda \mathbf{B}$ arises in relation to the generalised eigenvalue problem

$$
\mathbf{A v}=\lambda \mathbf{B} \mathbf{v}, \quad \lambda \in \mathbb{C}, \quad \mathbf{v} \neq \mathbf{0} .
$$

(Ordinary eigenvalue problems are special cases where $\mathbf{B}=\mathbf{I}$.)
The characteristic equation for this problem is $\operatorname{det}(\mathbf{A}-\lambda \mathbf{B})=0$, which is a polynomial equation of order n in λ.

Generalised eigenvalue problems (cont.)

Generalised eigenvalue problems are well studied, and thus implemented in many software packages for linear algebra:

$$
\begin{aligned}
& \text { SciPy: scipy.linalg.eig } \\
& \text { NOTE: not numpy.linalg.eig! }
\end{aligned}
$$

Eigen3: Eigen::GeneralizedEigenSolver
Armadillo: eig_pair
Matlab: eig
LAPACK: xGGEV

