Visual OBJECT

RECOGNITION

$$
\begin{aligned}
& S T A T E-O F-T H E-A R T \\
& T E C H N T Q U E S \text { AND }
\end{aligned}
$$

P ER FOR M A N C E E VAL U A T I O N

LECTURE 2： IMAGE FORMATION

䩚Pin－hole，and thin lens cameras
䇛Illumination

懢Homographies
蟔 Epipolar Geometry
数Canonical Frames
(G) 2OOR FEF-EFIK FORESEN

THE PIN-HOLE CAMERA

綦A brightly illuminated scene will be projected onto a wall opposite of the pin-hole.

齿 The image is rotated 180°.

The Pin-Hole Camera

彞 From similar triangles we get:

$$
\begin{gathered}
x=f \frac{X}{Z} \quad y=f \frac{Y}{Z} \\
\gamma\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
\end{gathered}
$$

THE PIN-HOLE CAMERA

$$
\gamma\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

踰 More generally, we write:

$$
\gamma\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
f & s & c_{x} \\
0 & f a & c_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

f-focal length, s-skew, a-aspect ratio, c-projection of optical centre

THE PIN-HOLE CAMERA

$$
\mathbf{x} \sim \mathbf{K} \tilde{\mathbf{X}}
$$

数Motivation:

f-focal length, s-skew, a-aspect ratio, c-projection of optical centre

THE PIN-HOLE CAMERA

数 For a general position of the world coordinate system (WCS) we have:

$$
\mathbf{x} \sim \mathbf{K} \underbrace{\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right]}_{[\mathbf{R} \mid \mathbf{t}]} \underbrace{\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]}_{\mathbf{X}}
$$

THIN LENS CAMERA

靿 But we use lenses, not pin-hole cameras!

(E) 2OOR FER-ERIK FOFESEN

THIN LENS CAMERA

龉 A thin lens is a（positive）lens with $d \ll f$

榅 Parallel rays converge at the focal points
橉 Rays through the optical centre are not refracted

THIN LENS CAMERA

Image plane

数Thin lens relation (from similar triangles):

$$
\frac{1}{f}=\frac{1}{Z}+\frac{1}{l}
$$

```
(G) 2OOEFER-ERIKFORESEN
```


THIN LENS CAMERA

Image plane

蚛 Focus at one depth only.
业Objects at other depths are blurred.

THIN LENS CAMERA

諩Adding an aperture increases the depth-of-field, the range which is sharp in the image.

糍 A compromise between pinhole and thin lens.

Thin Lens Effects

Correct

Barrel distortion

Pin-cushion distortion

粨 Radial distortion
靿For zoom lenses: Barrel at wide FoV pin-cushion at narrow FoV
(G) 2OOEFFR-ERIK FORESEN

Thin Lens Effects

Correct
Darkened periphery
** Vignetting and $\cos ^{4}$-law

THIN LENS EFFECTS

Vignetting

$\cos ^{4}$-law

dampening with $\cos ^{4}(\mathrm{w})$

http://software.canon-europe.com/files/documents/EF Lens Work Book 10 EN.pdf

ILLUMINATION

糕 Image intensity is linear in radiance （at least before gamma correction）

敉 E．g．adding a second，identical light source will double the sensor activation．

$$
a(\mathbf{x})=\int s(\lambda) r(\lambda, \mathbf{x}) e(\lambda) d \lambda
$$

噒 s－sensor absorption spectrum，r－reflectance spectrum of object，e－emission spectrum of light source（attenuated by the atmosphere）

```
(G) 2OOF FEF-FRIN FOFESEN
```


ILLUMINATION

㨋 Mean subtraction，derivatives，and other DC free linear filters remove a constant offset in intensity

蝶 Normalising a patch by e．g．the l^{2}－norm removes scalings of the intensity．

鈿Affine invariance by combining both．

HOMOGRAPHIES

蝶 For a planar object, we can imagine a world coordinate system fixed to the object

HOMOGRAPHIES

螦 For a planar object, we can imagine a world coordinate system fixed to the object

$\gamma\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\mathbf{K}\left[\begin{array}{lll}r_{11} & r_{12} & t_{1} \\ r_{21} & r_{22} & t_{2} \\ r_{31} & r_{32} & t_{3}\end{array}\right]\left[\begin{array}{c}X \\ Y \\ 1\end{array}\right]=\underbrace{\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]}_{\mathbf{H}}\left[\begin{array}{c}X \\ Y \\ 1\end{array}\right]$

HOMOGRAPHIES

数 In general，we can use homographies to describe the transformation between any two planes in 3D．
＊＊Since the matrix \mathbf{H} is only unique up to scale， it has only 8 degrees of freedom．

蛽 It can be estimated from 4 or more corresponding points on the two planes．

諩 See e．g．R．Hartley and A．Zisserman， Multiple View Geometry for Computer Vision

```
(E) 2OOE FOFRFRINFOFESN
```


EPIPOLAR GEOMETRY

The geometry of two cameras:

数 $\mathrm{e}_{1}, \mathrm{e}_{2}$ are called epipoles. $\mathrm{o}_{1}, \mathrm{o}_{2}$ are the optical centres.

EPIPOLAR GEOMETRY

觖 So in general，two view geometry only tells us that a corresponding point lies somewhere along a line．

業 In practice，we often know more，as objects often have planar，or near planar surfaces． i．e．，we are close to the homography case．

蝶 Also：If the views have a short relative baseline，we can use even more simple models．

CANONICAL FRAMES

龂Aka．covariant frames，and invariant frames．
彞 Resample patches to canonical frame．
䗒 Points from e．g．Harris detector，or SIFT．

(C) 2OOE FER-ERIK FORESEN

CANONICAL FRAMES

数After resampling matching is much easier.

CANONICAL FRAMES

粼A hierarchy of transformations：

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
s & 0 & t_{1} \\
0 & s & t_{2} \\
0 & 0 & 1
\end{array}\right] \text { 栐 scale+translation }}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{1} \\
a_{21} & a_{22} & t_{2} \\
0 & 0 & 1
\end{array}\right] \text {. } \begin{array}{c}
\text { and }
\end{array} \text { affine (similarity+skew) }} \\
& {\left[\begin{array}{lll}
h_{11} & h_{13} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right] \text { 朔 } 4 \text { plane projective (affine+forshortening) }}
\end{aligned}
$$

CANONICAL FRAMES

滕Scale+translation: Useful if we know that there is no rotation.
E.g. for a camera mounted in a car, looking at upright pedestrians.

(E) 2OOE FEFFERIN FOFESEN

CANONICAL FRAMES

数Similarity: Full invariance in image plane, none outside image plane.
Useful e.g. for pose estimation.

CANONICAL FRAMES

䩮Affine: Deals with most common projective distortions. Good if patch size is small relative to distance to patch.

(E) 2OOEFFR-ERIK FOFESEN

CANONICAL FRAMES

絜 Plane projective: Full modelling of a plane in 3D. Requires more image measurements, but is better for extreme view angles.

CANONICAL FRAMES

数Combinatoral issues

傫 From Harris or SIFT we get images full of keypoints.

(G) 2OORFFR-ERIK FORESEN

CANONICAL FRAMES

Combinatoral issues

政 From Harris or SIFT we get images full of keypoints．

彞 Using the points，we want to generate frames in both reference and query view and match them．

䩚 We don＇t want to miss a combination in one of the images，but we don＇t want to generate too many combinations either．

CANONICAL FRAMES

龉Solutions：
諩Use each point as a reference point．
缐 Restrict frame construction to k－nearest neighbours in scale space（or image plane）．

粼 Remove duplicate groupings，and reflections．

DISCUSSION

Questions/comments on paper and lecture
业E.g. Why k-nearest neighbours in scalespace? Are there other useful canonical frames?...

