Visual OBJECT

RECOGNITION

$$
\begin{aligned}
& S T A T E-O F-T H E-A R T \\
& T E C H N T Q U E S \text { AND }
\end{aligned}
$$

P ER FOR M A N C E E VAL U A T I O N

LECTURE 3：DETECTION OF CANONICAL FRAMES

数 The case against interest point groups
数Scale Selection and DoG
諩Affine adaptation
蝻 Maximally Stable Extremal Regions（MSER）
㖤 Maximally Stable Colour Regions（MSCR）
䈄 Edge Based Regions（EBR）

```
(E) 2OOE FOFR-EFIN FORESEN
```


CANONICAL FRAMES

颣 In the previous lecture we saw how c－frames can be found from groups of feature points．

龉 This lecture is about detecting c－frames from single feature points／feature regions．

蝶Advantages：
對 smaller c－frames in image（better scale inv．）
数higher frame repeatability

CANONICAL FRAMES

其 Repeatability of a feature detector
䗱 $p($ feature detected in image $)=\epsilon$ (more on this in lecture 7)

C-Frame repeatability:

$$
p\left(F_{1} \cap F_{2} \ldots F_{N}\right)=\epsilon^{N}
$$

N - Number of feature points in canonical frame.

```
(G) 2OOF FEF-EFIN FORESEN
```


ScALE SpACE

靿 Scale space $f(\mathbf{x}) \Rightarrow f_{s}(\mathbf{x}, \sigma)$
粼 The image is extended with an extra dimension, for scale/image blur.

$$
f_{s}(\mathbf{x}, \sigma)=(f * g(\sigma))(\mathbf{x})
$$

** The blurring kernel $g(\sigma)$ is typically a Gaussian.

$$
g(\mathbf{x}, \sigma)=\frac{1}{2 \pi \sigma} e^{-\mathbf{x}^{T} \mathbf{x} / 2 \sigma^{2}}
$$

SCALE SPACE

蜉 Illustration in 1D

ScALE SELECTION

Find a characteristic point (e.g. max) on a function of position and scale

$$
(\hat{\mathbf{x}}, \hat{\sigma})=\arg \max h(f(\mathbf{x}, \sigma))
$$

Idea from (Lindeberg 1993), illustration by (Mikolajczyk et al. 2005)
(C) ZOOEFER-ERIKFORSSEN

SCALE SELECTION

Example: maximum of normalised Laplacian:

$$
h(f(\mathbf{x}, \sigma))=\sigma^{2}\left(f * \nabla^{2} g(\sigma)\right)(\mathbf{x})
$$

蟮 Note the normalisation by σ^{2}, which is needed to compensate for decaying amplitude with scale.

㖤Another option (used by SIFT) is difference-of-Gaussians:

$$
h(f(\mathbf{x}, \sigma))=(f *(g(\sigma)-g(k \sigma)))(\mathbf{x})
$$

ScALE SELECTION

疄 Efficient implementation using pyramids (Lowe 99)

(C) 2OOEFRF-ERIKFORESEN

ScALE SELECTION

粈We now have position and scale determined． One or more reference directions can now be found using a gradient orientation histogram at the found location in scale space．

$$
h_{k}=\sum_{\text {patch }}|\nabla \mathbf{f}(\mathbf{x})| B_{k}\left(\tan ^{-1} \nabla \mathbf{f}(\mathbf{x})\right)
$$

AFFINE ADAPTATION

瞵Scale Selection＋Reference direction gives a similarity frame

蚛 By iteratively adjusting the circle defined by position and scale to an ellipse，we can get a full affine frame instead．

諩 In practice done by finding a resampling $\mathbf{x}=\mathbf{A} \hat{\mathbf{x}}+\mathbf{m}$ that gives a structure tensor with equal eigenvalues in the c－frame．

AFFINE ADAPTATION

数Structure tensor from gradient：$\nabla \mathbf{f}=\left[f_{x} f_{y}\right]^{T}$

$$
\mathbf{T}(\mathbf{x})=\left(\left[\begin{array}{cc}
f_{x}^{2} & f_{x} f_{y} \\
f_{x} f_{y} & f_{y}^{2}
\end{array}\right] * g\right)(\mathbf{x})=\left(\nabla \mathbf{f} \nabla \mathbf{f}^{T} * g\right)(\mathbf{x})
$$

数 \mathbf{T} is a measure of anisotropy．Set：

$$
\mathbf{A}=\mathbf{T}^{1 / 2} \text { here defined as } \mathbf{A}^{T} \mathbf{A}=\mathbf{T}
$$

諩 Inverse whitening tranoform．Needs to be iterated a few times，as $g(x)$ should be anisotropic．

$$
\tilde{\mathbf{A}}=\mathbf{A R}, \mathbf{R} \in \mathrm{O}(2) \Rightarrow \tilde{\mathbf{A}}^{T} \tilde{\mathbf{A}}=\mathbf{T}
$$

Choose reference direction from gradient orientation histogram．

MSER

蝶 Maximally Stable Extremal Regions
彞Consider the set of all possible thresholdings of an image．．．

蜘Connected regions form segments．
橉Cf．Watershed algorithm
数 Look at stability of a function of segment across image evolution．e．g．area（component (t) ）

MSER

粰 MSERs are components that are maximally stable, i.e., have a local minimum of the rate of change:

c.f. Scale Selection

* Stability measure: Range of stable thresholds $\mathrm{t}_{2}-\mathrm{t}_{1}$ around min is called the margin of the region.

MSER

蛙Two possible thresholdings：$I(\mathbf{x})<t, I(\mathbf{x})>t$

絜 Detection is fast， 0.1 sec on 800×600 image （using the union／find algorithm）．

数MSER type（＋／－）is useful for matching

MSER

蛙 MSER is invariant to monotonic changes of intensity．i．e． $\mathrm{I}(\mathrm{x})$ and $\mathrm{f}(\mathrm{I}(\mathrm{x}))$ have the same output if $f(x+k)>f(x) \forall k>0$

䗉 Wide range of sizes obtained without a scale pyramid．Better still with a pyramid （Forssén\＆Lowe CVPR＇07）

漛 Can be used to track colour objects by computing MSERs on the Mahalanobis distance to a colour distribution．（Donoser\＆Bischof CVPR＇06）

Local Affine Frames

数 Find approximating ellipse of region.
数 Contour extrema in normalised frame give reference directions.

Nomalized distance

Matas et al. ICPR'02
(G) 2OORFFR-ERIK FORESEN

LOCAL AFFINE FRAMES

敖Approximating ellipse

from moments of binary mask $v: \Omega \mapsto\{0,1\}$

$$
\begin{gathered}
\mu_{k, l}(v)=\sum_{x} \sum_{y} x^{k} y^{l} v(x, y) \\
\mathbf{m}=\frac{1}{\mu_{0,0}}\left[\begin{array}{l}
\mu_{1,0} \\
\mu_{0,1}
\end{array}\right] \quad \mathbf{C}=\frac{1}{\mu_{0,0}}\left[\begin{array}{ll}
\mu_{2,0} & \mu_{1,1} \\
\mu_{1,1} & \mu_{0,2}
\end{array}\right]-\mathbf{m m}^{T} \\
\mathcal{R}(\mathbf{m}, \mathbf{C})=\left\{\mathbf{x}:(\mathbf{x}-\mathbf{m})^{T} \mathbf{C}^{-1}(\mathbf{x}-\mathbf{m}) \leq 4\right\} \\
\text { 箓 See appendix } \mathbf{C} \text { in thesis by Forssén } 2004
\end{gathered}
$$

Local Affine Frames

Normalisation to a circle (axis aligned) Compute the eigenfactorisation:

$$
\mathbf{C}=\mathbf{R D R}^{T}, \quad \operatorname{det} \mathbf{R}>0
$$

The circle normalisation can now be performed as:

$$
\mathbf{x}=\mathbf{A} \hat{\mathbf{x}}+\mathbf{m}, \quad \text { for } \mathbf{A}=2 \mathbf{R} \mathbf{D}^{1 / 2}
$$

$\hat{\mathrm{x}}$ - canonical coordinates
x - image coordinates

```
(G) 2OOFFFEF-FRINFOFESEN
```


Local AfFine Frames

鎆 Ellipse＋extrema of distance to centre is just one frame construction option．

歯 Other（affine covariant）choices：
鳖Points of maximum curvature．
諩 Bi－tangens．
㽪See Obdrzalek \＆Matas BMVC’02

MSCR

䗉Maximally Stable Colour Regions.
教 Define evolution function on an agglomerative clustering of image.

MSCR

颣 Improved robustness to illumination changes, and changes of background

繗 $\sim 3 x$ more computationally expensive.

EBR

业 Edge Based Regions（Tuytelaars\＆vanGool ICVIS＇99）

對Start in a Harris point（Harris\＆Stephens AVC’88） situated on a Canny contour（Canny PAMI＇86）．

政 Move in both directions in an affine invariant manner．

EBR

数Affine invariance by maintaining equality of two integrals $l_{1}=l_{2}$

$$
l_{i}=\int\left(\left|\mathbf{p}_{i}^{\prime}\left(s_{i}\right) \quad \mathbf{p}-\mathbf{p}_{i}\left(s_{i}\right)\right|\right) d s_{i}
$$

䗲 Proportional to two areas and affinities preserve area ratios．

EBR

粰 All values of si give affine invariant regions. Which should be selected?
A. Local max of mean intensity in parallellogram
B. Two other choices in today's paper.

DISCUSSION

业 Questions/comments on paper and lecture.

