VISUAL OBJECT RECOGNITION

STATE-OF-THE-ART TECHNIQUES AND PERFORMANCE EVALUATION

LECTURE 7: PERFORMANCE EVALUATION

Detector: Repeatability Tests
Descriptor matching: Inlier frequency curve
Classifier: ROC and Precision-Recall curves
Discussion of exam and evaluation

Sed for evaluating feature detectors. Article #2, Mikolajczyk IJCV'06.

* Known geometric transformation between two views can be used to check if the same region is detected in two images.



* Example: Homography

A point **x** should be transformed to a point **x**' according to:

 $\mathbf{x}' = \mathbf{H}\mathbf{x}$

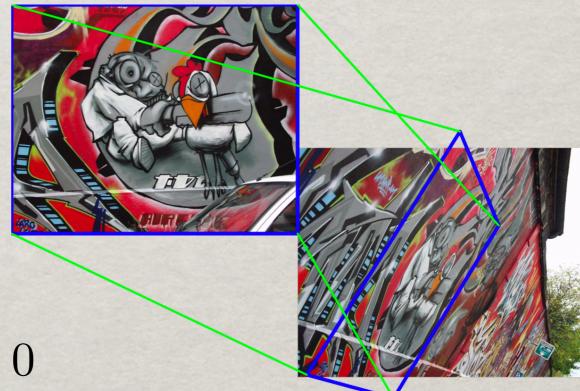
In reality we detect regions: $\mathbf{x}^T \mathbf{C} \mathbf{x} \leq 0$ $\mathbf{C} = \frac{1}{4} \begin{bmatrix} \mathbf{I}^{-1} & -\mathbf{I}^{-1} \mathbf{m} \\ -\mathbf{m}^T \mathbf{I}^{-1} & \mathbf{m}^T \mathbf{I}^{-1} \mathbf{m} - 4 \end{bmatrix}$ (C) 2008 PER-ERIK FORSEÉN

* Example: Homography

An elliptic region C(m,I) should be transformed to a region C'(m',I') according to:

 $\mathbf{C}' = \mathbf{H}^{-T} \mathbf{C} \mathbf{H}^{-1}$

Can be derived from perimeter equation: $\mathbf{x}^T \mathbf{C} \mathbf{x} = 0$



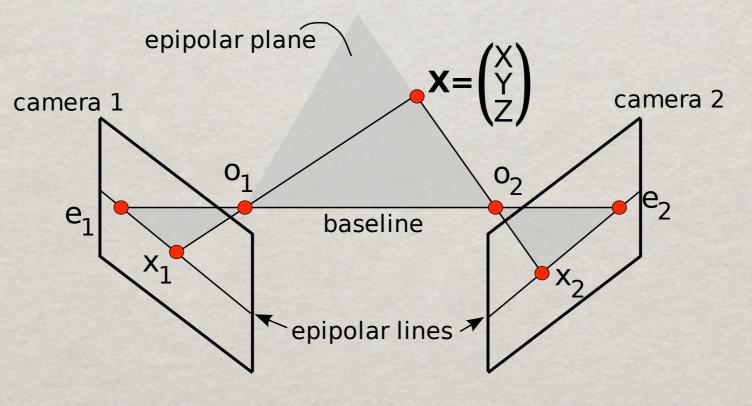
1.Compute overlap error:

2.Assign 1-to-1 correspondences from image 1 to image 2. (Combinatorial problem if nested regions are detected)

3.repeatability = correspondences (with $\epsilon \leq thr$) divided by #features (in mutually visible region)

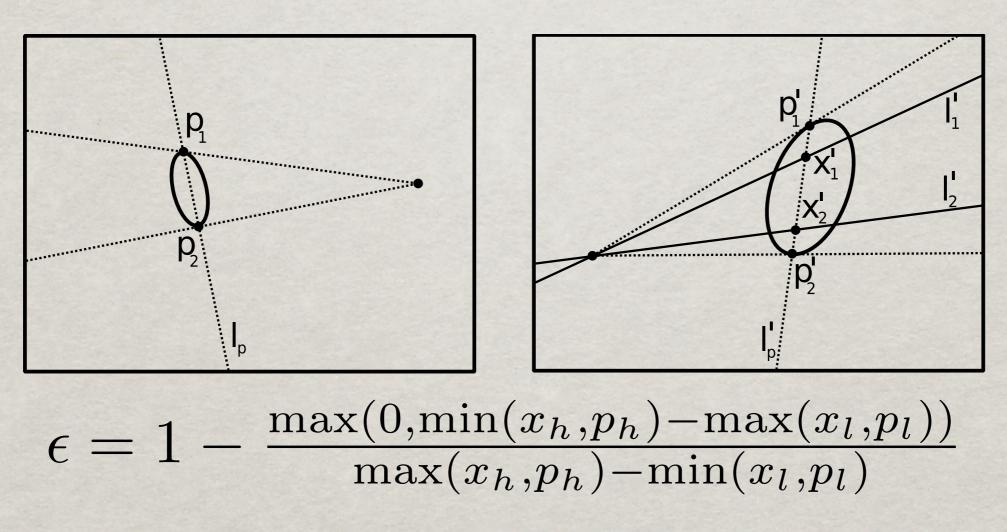
Using generalisation of overlap error to 3D correspondences (Forssén&Lowe ICCV'07)

Using epipolar geometry, and specifically epipolar tangents.



Sepipolar tangents

Measure overlap of tangents and projected epipolar tangents.



Repeatability measures probability that a feature will be detected again.
P(detection|visibility)

Repeatability is not useful for non-rigid objects/categories.
As a geometric constraint is used.

CORRESPONDENCE COUNT

* A complementary statistic is to simply count the number of correspondences (skip division by number of detected features).

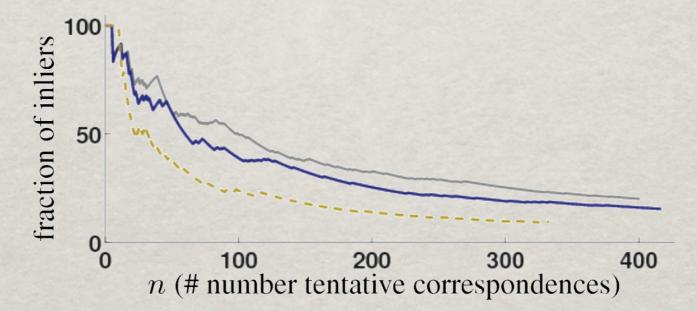
Sood for object recognition: If each feature match casts a vote, the probability of a cluster forming by chance is low, so outliers

can be tolerated.

Also: All hypothesis generation(HG)+verification schemes. HG costs only time.

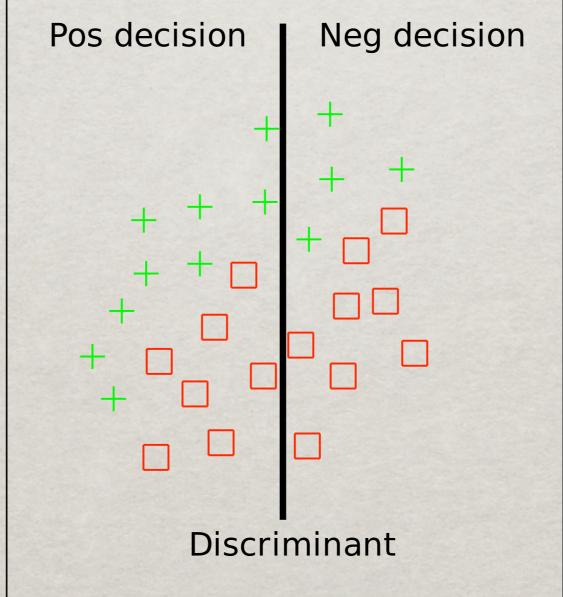
INLIER FREQUENCY CURVE

Descriptor matching generates ordered *tentative correspondences*. When ground-truth is known, these can be evaluated with an *inlier frequency curve*, Chum&Matas, CVPR06.



Good for RANSAC, and e.g. PROSAC (which uses the ranking).

Used for evaluating *binary classifiers* across a change of the discriminant.



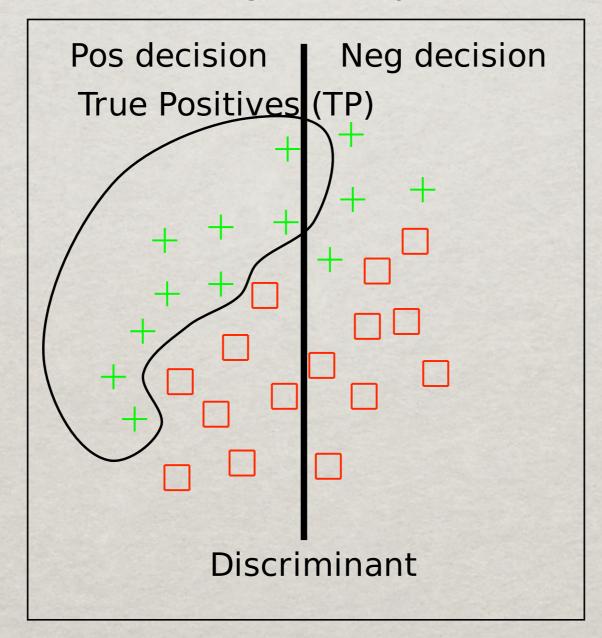
Used for evaluating binary classifiers across a change of the discriminant.

The optimal discriminant direction is often application independent, but the actual threshold is not.

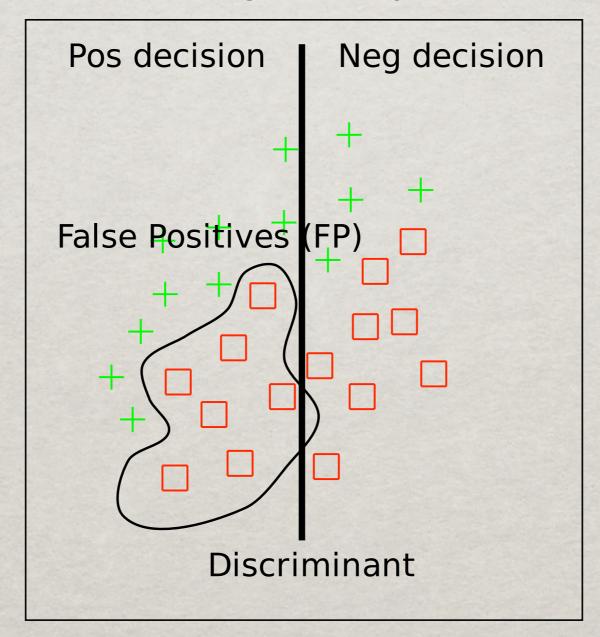
With ROC and PR curves, comparison can be done without committing to a specific discriminant.

- Instead of a single performance measure we get a curve.
- * Useful if criterion changes over time. E.g.
 - 1.Few false alarms might be most important.
 - 2.It might be very important not to miss a positive.
- To adapt, read curve in a different place.

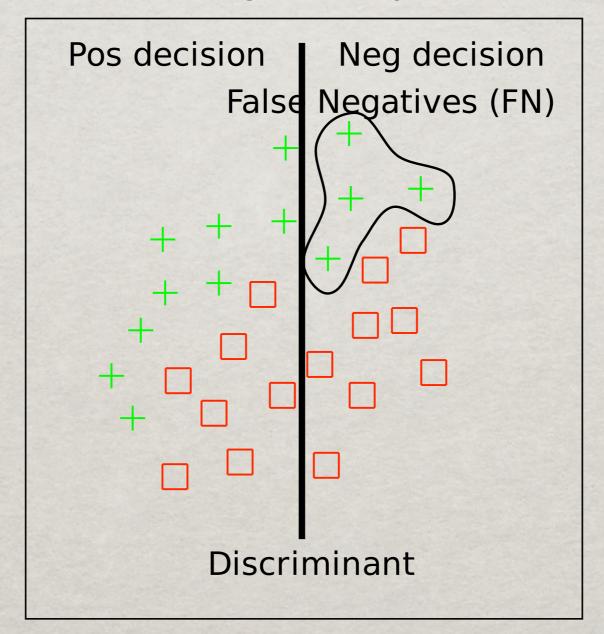
Used for evaluating binary classifiers.



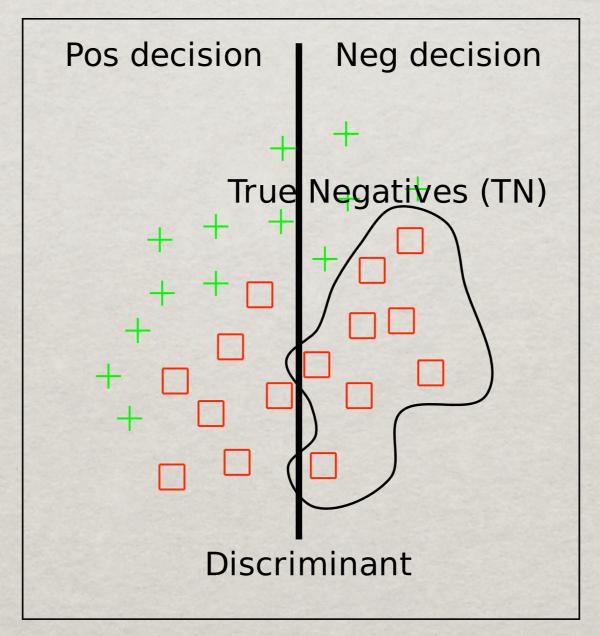
Used for evaluating binary classifiers.



Used for evaluating binary classifiers.



Used for evaluating binary classifiers.



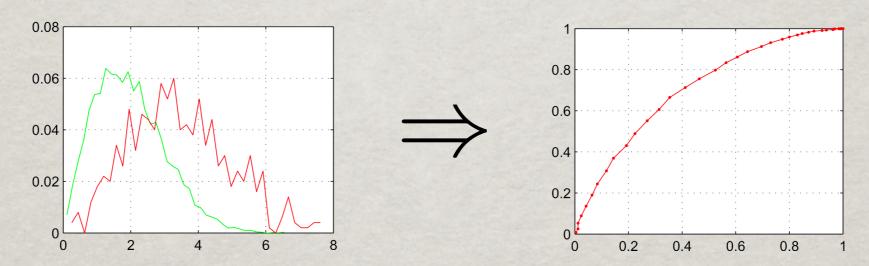
ROC CURVE

Move discriminant, and plot True Postive Rate(TPR) against False Positive Rate(FPR)

Invariant to skewed datasets. Since normalisation is done with actual number of positives and negatives.

ROC FROM HISTOGRAMS

* ROC curves can used for evaluating matching performance as well. By using error histograms for inlier&outlier sets.



 $\label{eq:transform} \overset{\hspace{0.1cm} \mbox{with Discriminant moving from left to right.} \\ \mathtt{TPR}(\epsilon) = \int_{0}^{\epsilon} p(\epsilon' | \mathtt{inlier}) d\epsilon' \quad \mathtt{FPR}(\epsilon) = \int_{0}^{\epsilon} p(\epsilon' | \mathtt{outlier}) d\epsilon' \\ \end{cases}$

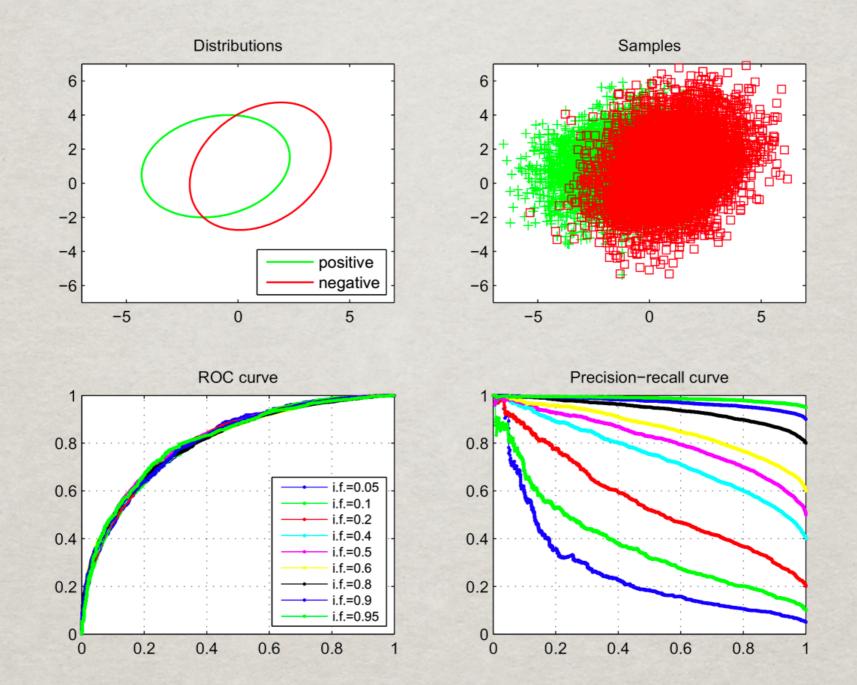
PRECISION-REALL CURVE

Move discriminant, and plot Precision against Recall

 $\label{eq:precision} \texttt{Precision} = \frac{\texttt{TP}}{\texttt{TP} + \texttt{FP}} \qquad \texttt{Recall} = \texttt{TPR} = \frac{\texttt{TP}}{\texttt{TP} + \texttt{FN}}$

Looks only at correctly reported positives.

ROC VS PR CURVES



* ROC ignores positive/negative sample ratio. (c) 2008 PER-ERIK FORSSÉN

Written exam contents:

The slides from all seven lectures

The six articles

EXAM

Time for the written exam: Nov 24, kl 13-14

COURSE EVALUATION

Webpage for course evaluation: <u>http://cruz.isy.liu.se/wiki/index.php/VOR</u>

I will provide login and password.

DISCUSSION

Questions/comments on paper and lecture.