Lecture 1: Introduction

Per-Erik Forssén, docent Computer Vision Laboratory Department of Electrical Engineering Linköping University

Lecture 1: Introduction

- Visual Object Recognition what is the problem?
- Terminology and Taxonomy Classification, Categorisation, Recognition, Detection, Pose estimation, Articulation, Expression, Feature extraction, Learning.
- About this course

lecture format, projects, exam

- In humans, recognition is a holistic process that involves all senses/modalities.
- Vision, sound, touch, taste, smell, body sense.

- In humans, recognition is a holistic process that involves all senses/modalities.
- Vision, sound, touch, taste, smell, body sense.
- Recognition in computers typically involves just one modality (or a few).

tactile recognition Neuroinformatics at Uni. Bielefeld

sound recognition Shazam app

visual recognition Google goggles app

 Recognition is a comparison of an observation with what is stored in memory.

- Recognition is a comparison of an observation with what is stored in memory.
- Feature extraction constructs an observation
- Learning constructs the memory

- Recognition is a comparison of an observation with what is stored in memory.
- Feature extraction constructs an observation
- Learning constructs the memory

 OR happens very quickly in the human visual system. Bottom up process takes less than 150ms (S. Thorpe et al. 1996).

- OR happens very quickly in the human visual system. Bottom up process takes less than 150ms (S. Thorpe et al. 1996).
- This has evolutionary reasons...

- OR happens very quickly in the human visual system. Bottom up process takes less than 150ms (S. Thorpe et al. 1996).
- This has evolutionary reasons...
- Since it is a pre-conscious process in our brains, we do not intuitively think of object recognition as being difficult.

Moravec's Paradox

- Initially in AI computer vision was assumed to be simple, and logical inference hard.
- "Just detect the objects in an image and generate the appropriate symbols"
- Only symbolic reasoning and and inference was seen as proper AI problems.
- Now we know that computer vision is much more complex than logical inference.

von Neumann vs. Biological architectures

 Visual cortex, eyes, muscles, cerebellum, midbrain.

- The "Standard Model", Riesenhuber&Poggio, Nature Neuroscience vol.2 no.11, 1999
- Alternating template matching and local max operations.
 - Decreasing spatial resolution, increasing number of feature types
- Perception only, no motor functions (head&eye movements)

What do we mean by Visual Recognition?

- The same object instance?
- The same class? category?
- The same pose?
- The same articulation? expression?

Object instance recognition

Johansson&Moe CRV05

- Recognition of the same object
 - Different view/pose (also pose estimation)
 - Different illumination
 - The same articulation/expression

Object instance recognition

• Application: Pose estimation for bin picking

 Several identical instances of the object need to be distinguished

Random Bin Picking

http://www.youtube.com/watch?v=09LzufOnbX0

- Recognition of an object class/category
 - Different instance
 - Different view/pose
 - Different illumination
 - Different articulation/expression

• Main application is image database search:

• Now also video database search:

http://www.semantic-robot-vision-challenge.org/

Classes and Categories

- Object class is a computer science construct
- Implicit assumption: It is possible to partition a dataset into disjoint classes
- This fits poorly to the structure of natural language where categories are often nested hierarchically, e.g.

Classes and Categories

- Natural categories tend not to be defined by appearance alone.
- Applicable actions also matter

e.g. a "chair" is something you sit on. Number of legs, colour etc. does not matter.

(CC) 2 C2 10 40 8 P EP RE - RE- RE IRKI KF OF ROS SR SS ÉS NÉN

Classes and Categories

- A category member is instead recognized as being similar to one of possibly several prototypical category members.
- Category membership is not a binary decision.
- Lakoff, George, "Women, Fire, and Dangerous Things - what categories reveal about the mind". University of Chicago Press. 1987

Embodied Recognition Systems

CVL research project EVOR

 An embodied system arranges its own memory and collects its own observations

Taxonomy of Recognition Approaches

3D model based

 Memory: A 3D model generated from multiple views for each object

 Observation: A new 3D model

3D model based

 Memory: A 3D model generated from multiple views for each object

 Observation: A new 3D model

A.S. Mian et al. TPAMI 2006

3D model based

 Memory: A 3D model generated from multiple views for each object

Observation: A new 3D model

+ Illumination invariant

- No abstraction, exact matches only

Used in some machine vision applications, e.g. bin-picking

Appearance based

- Used by HVS
- Global appearance: recognition of a visual pattern
- Local appearance: recognition of many small patterns
- Constellation models: recognition
 of many small patterns and their
 arrangement

 E.g. Run a fast pattern recognition algorithm as a sliding window detector.

Scale pyramid for scale invariance

- E.g. Run a fast pattern recognition algorithm as a sliding window detector.
- Cascaded face detection

Ivan Laptev

• Application: Cascaded face **detection** for autofocus

www.adorama.com review of Fujifilm finepics F40fd

Also preprocessing step in face recognition

Pedestrian detection

Dalal&Triggs, CVPR'05 Histograms of Oriented Gradients for Human Detection

Pedestrian detection

Dalal&Triggs, CVPR'05 Histograms of Oriented Gradients for Human Detection

 Nowadays constellation models are used E.g. Felzenswalb et al., CVPR'08, "A discriminatively trained, multiscale, deformable part model"

Local appearance

- Detect local invariant frames and cut out many patches.
- Try to match all patches in image to all patches in memory.

Local appearance

- Bag-of-features / Bag-of-words
- Crude, so often combined with verification to remove false matches.
- Can handle occlusion and articulation
- Scales to video.
- 3D models may be built *after* recognition

Constellation models

- A combination of local and global methods.
 - 1. A coarse global model
 - 2. A fixed number of part models with flexible spatial arrangement.

Felzenswalb et al., CVPR'08, "A discriminatively trained, multiscale, deformable part model"

Global appearance models

- Good for non-articulate objects and objects with small articulation.
- Pose can be dealt with by running one detector for each pose.
 E.g. for faces: frontal, left side, right side.
- Handles lower resolution than local appearance models.
- Occlusion is problematic.
- Large training data sets are needed.

Constellation models

- Improves on global models to better handle articulation and moderate pose changes.
- Handles lower resolution than local appearance models.
- Occlusion is problematic.
- Large training data sets are needed.

Local appearance models

- Can handle occlusion
- Deals with rotations, scale changes, and affine distortions.
- Can handle large view changes, 25-60deg, depending on what is imaged
- Requires higher resolution than sliding window approach

- Two options
 - 1. For 6 PhD course credits you need to participate actively in the paper discussion, and do the final exam. If you also do the project you get an extra 2hp.
 - 2. If you are not a doctoral student you skip the project, and the paper discussion. Just follow the lectures. You should still read the papers of course.

- The papers:
 - Each lecture has an associated paper, chosen both for content and readability.
 - The paper should be read in advance
 - PDFs of papers will be available on the course web page:

http://www.cvl.isy.liu.se/Education/Graduate/VOR14/articles/

- The Lectures, preparation
 - 1. Read the paper thoroughly
 - 2. Make notes of related questions and issues you want to discuss
 - 3. Each participant should prepare at least two issues/questions for each lecture

- The Project
 - For 8hp you are also expected to do a small programming project
 - You are encouraged to suggest your own project.
 - A list of possible other project topics will be handed out later.
 - Duration should be approx 2 weeks including the writing of a small report.

• The Exam

- The course will end with a written exam
- If 4 people or fewer, possibly an oral exam
- Be prepared to answer questions about concepts and algorithms introduced in the course.

Schedule

- Is shedule after Christmas OK?
- Paper to read for LE2 is:

M. Brown, D. Lowe, "Invariant Features from Interest Point Groups", BMVC 2002

• Paper for LE3 will be decided before LE2.

Summary

- Recognition is matching between observations and memory
- Visual recognition works with a local to global principle
- Most recognition approaches are view based / appearance based. NOT 3D
- Depending on application, recognition means different things