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Seminar 8 date
• All seminars have been shifted by one week 

(again). 

• Time for LE8 is now April 7 12.30-15.
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Lecture 6: Tree Search and 
Hashing

• High dimensional spaces  
Distances, Region edges 

• Search Trees 
kD-Trees, Best Bin First (BBF), Ball Trees,K-means tree 

• Hashing 
Geometric Hashing (GH), Locality Sensitive Hashing (LSH)
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Motivation
• Finding the best match to a query descriptor q in 

a database with N prototypes p1...pN costs O(N). 

• For a database with thousands or millions of 
descriptors this is expensive. 

• A search tree can find several good matches 
(near neighbours) in O(log N) time. 

• A hash table can find a good match in O(1) time.
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High dimensional spaces
• Distances in high dimensional spaces are higher 

on average! 
 
 
 
 
 

• Small distances are unlikely in        for high D. 

Expected distance for two points in D-dim unit cube
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High dimensional spaces
• Volume shrinks relative to area. 

Example: unit “ball” 
 
 
 
 
 

• This means that a decision region in       has  
increasingly more edges as D increases.
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High dimensional spaces
• E.g. box decision regions have 2 edges in R1, 

4 in R2, 6 in R3, 8 in R4,... 2D in RD  

 

 

 

 

 

 

 
                ...

R1

R2
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Binary search
• Binary search to find scalar q in a list with N 

entries p1...pN:  
 
   1. Sort values such that  
    2. Set l=1 h=N  
    3. while 
    4. 
    5.     if m==l break  
    6.     if q>p(m) l=m 
    7.     else h=m 

• Complexity O(log(N)), exact solution found.
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kD-Trees
• Generalization of binary search to nD:

YesNo

q[k ]>m11

q[k ]>m22 q[k ]>m33
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kD-Trees
• Binary search only works in 1D,  

in higher dimensions the kD-tree gives a 
near neighbour. 

• Tree construction algorithm:  
 
    1. Select dimension kn with largest variance  
    2. Split dataset in two along selected  
        dimension at median value, mn. 
    3. Repeat for each of the subsets.
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kD-Trees
• Search for one neighbour is just one pass down 

the tree, and thus computation time is proportional 
to tree depth, d 

• Tree depth 

• To find more neighbours, the original algorithm 
suggested a depth-first search with branch 
pruning. 

• If ecurr<q[kn]-mn then skip branch. 
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Best-bin-first
• Depth-first search works poorly in high 

dimensional spaces, and thus [Beis&Lowe 
CVPR’97] suggest a best-first search instead. 

• Algorithm: 
 
    1. At each node, store the distance en=q[kn]-mn 
in a priority queue. Always insert lowest value first.  
    2. Go down alternate branch of the first node in 
the queue if en<ecurr
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Best-bin-first
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Multiple randomized  
kD-trees

• Multiple randomized kD-trees  
[Silpa-Anan& Hartley, CVPR’08] 

• Create multiple kD-trees with small random 
variations: 
In tree construction, select the D dimensions with 
largest variance, draw one at random  
(e.g. D=5). 

• Back-track in all trees in parallel, using best-first 
search.
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Ball Trees
• [Omohundro TR’89], Metric Tree [Uhlmann IPL’91] 

• A radius nearest neighbour (RNN) method:  
find all neighbours within a distance  
from the query vector 

• Each node in tree has a centre p, and a radius r 
 
     p is average of all leaves 
     r is maximum distance from p to a leaf

�
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Ball Trees
• An optimal ball tree is constructed bottom up. 

Very expensive. E.g. using agglomerative 
clustering: 
 
    1. Set each sample to be one cluster  
    2. Merge the two most similar clusters  
    3. Repeat step 2 until no clusters are left. 

• Agglomerative clustering generates a 
dendrogram, or similarity tree. This can be pruned 
using various heuristics to form the ball tree.
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Ball Trees
• Example of a search:  
 
 
 
 
 

• At each node, the distances to circle centres are 
computed, and compared to the radius.

Leibe&Mikolajczyk&Schiele, BMVC’06
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Ball Trees
• Advantage: Good if RNN is needed. 

I.e. find all neighbours with d<dmax 

• Disadvantages: 

• Tree construction algorithm does not scale to 
very large datasets 

• A ball in       is not such a useful region shape 
if sample density varies in the feature space.
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K-means Tree
• E.g. David Nistér and 

Henrik Stewénius, Scalable 
Recognition with a 
Vocabulary Tree, CVPR06 

• Hierarchical modification of 
the visual words idea from 
LE5 
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K-means Tree
• Building the tree:  
 
    1. Run K-means with e.g. K=10 on whole  
        dataset. 
    2. Partition dataset into K subsets using 
        Voronoi regions 
    3. Apply algorithm recursively on subsets. 

• The tree gets branching factor K.  
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K-means Tree
• Using the tree: 
 
      1. Compare query vector to prototypes at 
          current level. 
      2. Go down best branch
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K-means Tree
• Used to compute a TF-IDF bag-of-words vector 

quickly. 

• Much faster than non-hierarchical visual words 
algorithm. 

• As in the kD-tree, the terminal leaf node is a near 
neighbour. 

• The best-bin-first strategy makes the K-means 
tree a strong contender for ANN (today’s paper).
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Hash Tables
• An efficient way to perform lookup. 
 
 
 
 
 
 

• Each key is converted to an index using a hashing 
function:     index=H(key)

John Smith

Lisa Smith

Sam Doe

872

873

998

999

0

1
Lisa Smith +1-555-8976

John Smith +1-555-1234

Sam Doe +1-555-5030

Keys Indexes Key-value pairs
(records)
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Hash Tables
• Lookup is O(1) instead of e.g. O(N) in a list, O(log 

N) in a sorted list/tree etc. 

• Collisions can happen. i.e. different keys get the 
same index. Solved e.g. using chaining (linked 
lists), or linear probing (insertion at next free slot). 

• Linear probing typically wants a <80% filled table. 

• Hashing has poor cache locality.
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Geometric Hashing
• Introduced in Lamdan&Wolfson ICCV’88
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Geometric Hashing
• Modern example: Used for matching frames 

without descriptors by Chum & Matas, Geometric 
Hashing with Local Affine Frames, CVPR’06 

• Use pairs of affine frames. 
Express frame 2 in 
frame 1. 25 bins for angle 
16 for d1, 6 for d2 & d3 

• 9*106 unique values for  
key to hash.

Frame 1 Frame 2

(0,1)

(1,0)

d1

d2

d3
1

2

3
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Geometric Hashing
• Design of H(key) is not discussed further. 

• GH suffers from the same basic problem as trees: 
Neighbouring bins might contain the closest 
match. A low dimensional space is needed. 

• To further deal with the neighbour problem, 
Chum&Matas construct 6 different tables (for 6 
different frame constructions) and run them in 
parallel.  
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Locality Sensitive Hashing
• LSH Introduces locality concept in general for 

hashing. Introduced by Indyk&Mowani at 
STC’98. See also MP-LSH paper [Lv et al., 
ICVLDB’07 2008] 

• Hash functions are designed to increase risk of 
collision for similar data points=be locality 
sensitive.
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Locality Sensitive Hashing
• Common choice: 

• Where 
are random quantized projections.
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Locality Sensitive Hashing
• Common choice: 

• Where 
are random quantized projections. 

• LSH probing: 
Alt 1: Construct several hash tables (randomly),  
          and index them all using q.  
Alt 2: Construct several queries, by adding 
          random noise to q. 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Locality Sensitive Hashing
• LSH extensions: 

• Multi-probe LSH [Lv et al., ICVLDB’07]  
Instead perturbs H(q)  
Neighbours to Hl(q) are Hl(q)-1 and Hl(q)+1  
Try promising bins in sequence. 

• LSH Forest [Bawa et al ICWWW’05]  
Orders hash functions in a tree. Easier to 
update as new data is added. Also enables  
self tuning where parameters are adjusted.
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Summary
• Decision regions in nD are dominated by edges 

• Approximate KNN and RNN are implemented 
using either search trees or hashes. 

• Trees are O(log(N)) and more space efficient 
than hashes. 

• Hashes can be O(1), but most adjustments 
make them depend on N in practise.
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Projects
• Course is 8hp: 

     5hp for lectures+articles+exam  
     3hp for project. 

• Project part is 2 weeks of: 
     programming&research 
     writing a small report (a conference  
     submission will also do).
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Project examples
1.Repeat the comparison of LSH and FLANN in 

today’s paper on your own binary feature set (test 
speedup vs. precision). (or with Forest LSH 
instead of MP-LSH). 

2.Use e.g. VLfeat (http://www.vlfeat.org) to 
implement a bag-of-words recognition system. 
Test how system parameters affect result. 

3.Integrate SFOP detector with BRIEF descriptor 
and compare results to e.g. SIFT.

http://www.vlfeat.org
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Project examples
4.Implement and test a spatial verification for BoF 

style recognition (e.g. using similarity, or affine 
transform) of feature locations. 

5.Learn a matching metric, and compare it to least 
squares matching. 

6.Compare Chi2, EMD and least-squares on a 
problem of choice. 

7.Your own suggestion.
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Exam
Everyone should bring calendar for the next 
seminar, so we can decide on a date for the 
written exam. 

Plan: Middle of or end of April.
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Discussion
• Questions/comments today’s paper:  
 
M. Muja and D.G. Lowe, ”Scalable Nearest 
Neighbour Algorithms for High Dimensional 
Data”, TPAMI 2014
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Paper for next week
• Paper for next week will be announced over 

email later…


