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Exam
Exam times: 

April 16, 9-11 
April 29, 13-15 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Lecture 7: Voting and Learning
• Memory based learning  

Generalized Hough Transform, Meanshift Voting 

• Learning  
SVM, Random Forests, Boosting, Deep Learning, Convolutional 
Neural Networks
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Motivation
• Recognition by storing all observations in a 

memory and looking up good matches is called 
memory based learning.  

• Efficient indexing techniques from LE6 are 
essential here. 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Motivation
• Recognition by storing all observations in a 

memory and looking up good matches is called 
memory based learning.  

• Efficient indexing techniques from LE6 are 
essential here. 

• When storing everything is not feasible, other 
machine learning techniques are necessary. 

• Learning also adapts the matching metric.  
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Memory based learning
• Memory based learning is viable in object pose 

recognition [see e.g. Viksten LiU thesis 2010]
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Memory based learning
• Each training image generates a set of pairs (x,y) 

x=descriptor, y=(pose,id) 

• At test time,  
descriptors are 
computed, and 
corresponding  
(pose,id) 
hypotheses are  
found in memory. 

• Finally, hypotheses are combined using clustering. 

Query 
image

...
Query descriptor &
location information ...

Prototype descriptor &
auxiliary information

. . . . . .

knn

6-dim space

Clustering

Calculate invariant
information



© 2 0 1 5  P e r - E r i k  F o r s s é n

Memory based learning
• Common clustering techniques include: 

• Generalized Hough transform [Ballard, PR’80]  
generate constraints in parameter space, and paint 
them in an accumulator array/vote space. 

• Mean-shift clustering [Cheng PAMI’95]  
continuous domain voting
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Generalised Hough Transform
• Non-iterative      constant time complexity.
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• Quantisation can be dealt with by increasing the 
number of cells, and blurring.

Generalised Hough Transform
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• For a set of sample points  
we define a continuous PDF-estimate as:

Kernel density estimate
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• For a set of sample points  
we define a continuous PDF-estimate as: 
 

• K() is a kernel, e.g. 

• h is the kernel scale.

Kernel density estimate
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• By modes of a PDF, we mean the local peaks of 
the kernel density estimate. 

– These can be found by gradient ascent, starting 
in each sample. 

– If we use the Epanechnikov kernel,  
 
 
a particularly simple gradient ascent is possible.

Mode seeking
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1. Start in each data point, 

2. Move to position of local average  

3. Repeat step 2 until convergence.

Mean-shift filtering
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• After convergence of the mean-shift filter, all points 
within a certain distance (e.g. h) are said to constitute 
one cluster. 

• Value of KDE is the confidence in the corresponding 
hypothesis on pose and object type.

Mean-shift clustering
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Support Vector Machines
• Idea by V.N. Vapnik in the 1960s. Many 

improvements since. The description here is 
based on [T. Hastie et al. ”The Elements of 
Statistical Learning”, 2008]. 

• Binary classification example: 
for a feature vector x, we seek a function: 

• if f(x)>0 class 1, class 2 otherwise
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Support Vector Machines
• The optimization problem:  
 
 
 
 
 
 

• yi is output class membership {-1,1}
M

f(x)
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Support Vector Machines
• For the classification function: 

• Solution has the form: 

• where only  αi at the margin boundary are non-zero. The vectors 
xi at the margin are called support vectors, as they define w. 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Support Vector Machines
• For the classification function: 

• Solution has the form: 

• where only  αi at the margin boundary are non-zero. The vectors 
xi at the margin are called support vectors, as they define w. 

• Additional slack variables for all data points are needed to 
handle cases where all samples cannot be classified correctly. 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Support Vector Machines
• Instead of the linear version: 

• A kernel version is typically used: 

• h(x) is some mapping into a high dimensional space. 

• Scalar product can be replaced by a kernel function. 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Support Vector Machines
• Instead of the linear version: 

• A kernel version is typically used: 

• This leads to non-linear decision regions, defined by 
the support vectors. 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Support Vector Machines
• SVMs are usually used in a one-vs-all fashion, 

i.e. one SVM is trained per class. 

• Many variants and extensions, e.g. for 
regression, and so called latent SVMs as used 
by Felzenzwalb et al. in their DPM system 
[CVPR08] See lecture 5.
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Classification and 
Regression Trees

• CART are trees with very simple tests in each node 

• Tests are data-adaptive. The outcome of previous 
tests determine which new test to make. 

• Leaf nodes store responses instead of samples. E.g. 
class membership probabilities, or a regression 
model.

f (q)>t n n
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Classification and 
Regression Trees

• CART are trees with very simple tests in each node 

• Given a tree, the outputs at each leaf node are 
computed from training samples that end up in this 
node. 

• E.g. a class membership histogram, or a linear 
regression function fitted from data.

f (q)>t n n
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Random Forests
• Invented by Leo Breiman. [L.Breiman ML’2001]. 

Good Tutorial [Criminisi et al. FTCGV’2011] 

• Conceptually similar to the randomized kD-trees in 
LE6, but actually invented earlier. 

• Ensemble of CARTs. All tree outputs are combined to 
one statement by e.g. histogram averaging. 

f (q)>t n n f (q)>t n n

…
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Random Forests
• It is well known that fusion of several classifier outputs 

can improve performance. 

• Especially if the classifiers make errors that are 
uncorrelated. 

• Random forests exploit this by creating many relatively 
poor classifiers, that have uncorrelated errors.

f (q)>t n n f (q)>t n n

…
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Random Forests
• Uncorrelated classifier errors in RF are obtained 

in two ways: 

• Bagging. Each tree gets its own training set 
by drawing random training samples (with 
replacement). 

• Randomized node optimization. Just like in 
multiple randomized kD-trees (LE6).
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Random Forests
• Randomized node optimization. 

• This is typically involves drawing random split 
functions and evaluating these. 

• Evaluation is done with respect to the output 
class histogram entropy H(v). 
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Random Forests
• Evaluation is done with respect to the output 

class histogram entropy H(v). 

H([0.25,0.25,0.25,0.25])=1.39 H([0.00,0.00,1.00,0.00])=0.00H([0.10,0.10,0.70,0.10])=0.94
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Random Forests
• Evaluation is done with respect to the output 

class histogram entropy H(v). 

• Information gain criterion 
 

H([0.25,0.25,0.25,0.25])=1.39 H([0.00,0.00,1.00,0.00])=0.00H([0.10,0.10,0.70,0.10])=0.94
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Random Forests
• Application example: Pose from Kinect depth maps 

[Shotton et al. CVPR’11, PAMI’13] 

• 31 classes for body parts 

• RF applied in each pixel 

• Parameters: 
depth 20, 3 trees 

• Journal version also tests direct  
regression to 16 joint positions.  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Boosting
• General principle for ensemble optimization 

• weak learners are optimized in sequence 

• before adding another weak learner, the samples are tested on the 
current ensemble, and misclassified samples are given higher 
weight. 

• The ensemble now exhibits complementarity, not just uncorrelated 
errors. 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Boosting
• General principle for ensemble optimization 

• weak learners are optimized in sequence 

• before adding another weak learner, the samples are tested on the 
current ensemble, and misclassified samples are given higher 
weight. 

• The ensemble now exhibits complementarity, not just uncorrelated 
errors. 

• Often the weak learner is a linear classifier, but it could also be a 
classification tree. Such sequential optimisation of trees is reported 
to have marginally better performance than random forests [K.P. 
Murphy ”Machine Learning”, 2012]
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Boosting
• Application example: Face detection [Viola & 

Jones ICCV’01] 

• Here each weak learner 
is based on a single Haar-filter response.

Viola&Jones IJCV’04

www.adorama.com review of Fujifilm 
finepics F40fd

http://www.adorama.com
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Deep learning
• This is essentially the Perceptron from the 70s 

with a bag of tricks added: 

• Better non-linearity 

• Convolutional layers with max-pooling 

• Drop-out
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Deep learning
• Multi-Layer Perceptron (MLP) 

• Each node contains 
a weighted sum of 
inputs xl, and an 
activation function f()
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Deep learning
• Multi-Layer Perceptron (MLP) 

• Originated in the 70s 

• Training by error back-propagation using the 
derivative chain rule [thesis by Paul Werbos 1974] 
[D.E. Rumelhart et al. Nature 1986] 

• Many details have changed since to 70s 

• Today more training data is available and GPUs can 
be used for training.
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Deep learning
• The activation function f() must be non-linear  

otherwise a multi-layer network can be replaced  
by a single layer one. 

• ”classic” logistic function
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Deep learning
• The activation function f() must be non-linear  

otherwise a multi-layer network can be replaced  
by a single layer one. 

• ”classic” logistic function 

• Tanh
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Deep learning
• The activation function f() must be non-linear  

otherwise a multi-layer network can be replaced  
by a single layer one. 

• ”classic” logistic function 

• Tanh 

• ReLU 
(today’s paper)
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Deep learning
• In deep learning there are three distinct types of 

layers: 

1. Convolutional  
First few layers 

2. Fully-connected 
Near output 

3. Output
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Deep learning
• Convolutional layers 

• Weight sharing: A set of linear filter kernels that are 
shifted spatially 

• Non-linearity: activation function+normalization. 

• The output map is then reduced by max-pooling 

• Higher layers have more filter types, but smaller 
spatial resolution (c.f. ”Standard model” in lecture 1)
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Visual Object Recognition
• The “Standard Model”, 

Riesenhuber&Poggio, Nature 
Neuroscience vol.2 no.11, 1999 

• Alternating template matching and 
local max operations. 

• Decreasing spatial resolution, 
increasing number of feature types 

• Perception only, no motor functions 
(head&eye movements)

Mutch&Lowe CVPR’06
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Deep learning
• Max-pooling 

• Max response in 3x3 neighbourhood, stride 2 

• Improve performance in convolutional layers.
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Deep learning
• Max-pooling 

• Max response in 3x3 neighbourhood, stride 2 

• Overlapping pooling as in today’s paper.
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Deep learning
• Fully connected layers 

• Layers before output have no spatial shifts 

• During training a technique called dropout is 
applied here.
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Deep learning
• Drop-out 

• During training, randomly set 50% of nodes to zero. 

• At test time scale responses by 0.5 to compensate. 

• Usually applied at the fully-connected layers to 
make responses more independent of each other.
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Deep learning
• Output layer 

• For classification the output layer has a 
softmax logistic normalization  

• Gives values in range [0,1] that can be 
interpreted as probabilities.
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Deep learning
• Output layer 

• Another option is to train the network to output 
the input images again 

• Networks with such an output layer are called  
autoencoder networks 

• last hidden layer can now be used as an 
image feature (see also DeCAF, lecture 3)
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Deep learning
• Training 

• Basic principle is still back-propagation of errors. 

• Random initialization of weights 

• Stochastic (block) estimation of error gradients 

• Many passes (epochs) through the data. 

• Bag of tricks. See todays paper.
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Discussion
• Questions/comments on today’s paper:  
 
A. Krizhevsky, I. Sutskever, G.E. Hinton, 
”ImageNet Classification with Deep 
Convolutional Neural Networks”, NIPS 2012 
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Paper for next week
• Paper for next week will be announced over 

email later…


