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Overview
• Issues with standard RANSAC 
• Maximum-likelihood scoring 
• LO-RANSAC 
• Preemptive RANSAC 
• DEGENSAC 
Not covered here: All the other variants 

RANDOMIZED RANSAC, G-SAC, NAPSAC etc. 
Paper to read for next week: PROSAC 
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RANSAC issues

In lecture 3 we introduced RANSAC 
(Fischler&Bolles 81). 

It finds a model with maximal support in the 
presence of outliers 

Approach: randomly generate hypotheses and 
score them. 

Most novelties since 1981 covered in thesis by: 
Ondrej Chum, Two-View Geometry Estimation 
by Random Sample and Consensus, July 2005
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RANSAC issues
S - correspondence set, K - number of trials!
! for k=1:K!
! !! s=sample_draw_minimal(S)!
! !! m=model_estimate(s)!
! !! [v,inliers]=model_score(m,S)!
! !! if v>best_v!
 ! !! ! best_inlier_set=inliers!
! !! ! best_v=v!
! !! ! best_m=m!
! !! end!!
! end!
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RANSAC issue #1

Underlying optimization problem: 
!

!

score is a discrete inlier count: 
!

!

there may be many equally good optima!

!5

" =
X

k

X

l

vk||xkl � proj(Xk, ✓l)||2 vk 2 {0, 1}

s =
X

k

vk



June 3, 2014 Computer Vision lecture 5b

Computer Vision Laboratory

RANSAC issues #2 and #3

Two more problems with the original approach:
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Inlier noise Near degeneracies
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RANSAC issue #3

Near degeneracies can be dealt with by sampling 
non-randomly, e.g. 

• DEGENSAC, for F estimation in plane dominant 
scenes. Chum et al., Two-view Geometry 
estimation unaffected by a Dominant Plane, 
CVPR05 

•   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RANSAC issue #3

Near degeneracies can be dealt with by sampling 
non-randomly, e.g. 

• DEGENSAC, for F estimation in plane dominant 
scenes. Chum et al., Two-view Geometry 
estimation unaffected by a Dominant Plane, 
CVPR05 

• Distance constraint for points used in E 
estimation. Hedborg et al., Fast and Accurate 
Structure and Motion Estimation, ISVC09  
Reduces #iterations by 50% in forward motion.
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Underlying optimization problem: 
!

!

score is a discrete inlier count: 
!

!

there may be many equally good optima!
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Better to use a robust error norm: 
!

!

  
!

!

  
 

Maximum likelihood scoring
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Better to use a robust error norm: 
!

!

and as score, the minimum error (MLESAC): 
!
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Better to use a robust error norm: 
!

!

and as score, the minimum error (MLESAC): 
!

called maximum likelihood scoring 
See: Torr & Zisserman, MLESAC: A new robust 

estimator with application to estimating image 
geometry, CVIU’00
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Inlier noise means that the heuristic for 
number of samples to draw: 
 
 
is overly optimistic. 

A small modification makes the heuristic 
work again: Chum et al., Locally 
Optimized RANSAC, DAGM03
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N = log(1� p)/ log(1� ws
)

LO-RANSAC
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LO-RANSAC
Small modification:
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S - correspondence set, K - number of trials!
! for k=1:K!
! !! s=sample_draw_minimal(S)!
! !! m=model_estimate(s)!
! !! [v,inliers]=model_score(m,S)!
! !! if v>best_v!
! !! ! [inliers,v,m]=local_optimization(inliers,v,m)!
 ! !! ! best_inlier_set=inliers!
! !! ! best_v=v!
! !! ! best_m=m!
! !! end!!
! end!
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Chum tries four variants of local optimisation: 
!

!

!

!

!

#3 and #4 worked best, and #4 came close to 
the heuristically expected #samples.
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1. Linear estimation from all inliers	

2. Iterative linear estimation with 
decreasing inlier threshold.	

3. Inner RANSAC	

4. Inner RANSAC with #2.

LO-RANSAC
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The inner RANSAC step uses non-minimal sample 
sets. Errors for linear F estimation:

LO-RANSAC
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Open source

Lebeda, Matas, Chum, Fixing the Locally 
Optimized RANSAC, BMVC’12 

C/C++ library available on the web. Source code 
on request. The ”Fixes” are: 

 1. Maximum likelihood scoring (i.e. MLESAC) 
2. Iterative Reweighted Least-Squares on 
random subsets of bounded size (7xmin_subset) 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Preemptive Ransac

David Nister, Preemptive RANSAC for 
live structure and motion estimation, 
ICCV03 

Total time for RANSAC is given by: 

k- #iterations tM-model estimation time, 
tV-verification time. mS - #models/iteration
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t = k(tM + E[mS ]tV )
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Preemptive Ransac

David Nister, Preemptive RANSAC for 
live structure and motion estimation, 
ICCV03 

Total time for RANSAC is given by: 

k- #iterations tM-model estimation time, 
tV-verification time. mS - #models/iteration 

If many correspondences, tV will dominate.
!19

t = k(tM + E[mS ]tV )
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Preemptive Ransac

Idea: Do a probabilistic verification instead. 

• In a real-time system, t is fixed, so if we 
reduce tV we may increase k. 

• Preemptive RANSAC does this by 
evaluating all hypotheses in parallel. 

• In each step, a fixed number of most 
promising hypotheses are kept.
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t = k(tM + E[mS ]tV )
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Preemptive Ransac

Preemptive RANSAC: 
 
 
 
 
 
 
f(1)=M  and
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1. Generate f(1) hypotheses in parallel.	

2. For n=1 to N	

3.       Evaluate f(n) hypotheses on 
          a random correspondence	

4.       Keep the f(n+1) best hypotheses 
          according to accumulated score.	


f(n + 1)  f(n)
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Preemptive Ransac

f(n) - the preemption function 

B - block size (f only changes every B 
steps) 

M - number of models 
Accumulated scoring 
Log-likelihood of sample n given model m
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L(m) =
NX

n=1

⇢(n, m)

⇢(n, m)

f(n) = bM2�b
n
B cc
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Degensac
Chum, et al., Two-view Geometry Estimation 

Unaffected by a Dominant Plane, CVPR’05 
Planar dominant scenes are also problematic
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Degensac

Actually, the F estimation problem is even worse 
than it might appear, as 5 points in a plane +2 
arbitrary correspondences gives an F 
compatible with the plane. 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Degensac

Actually, the F estimation problem is even worse 
than it might appear, as 5 points in a plane +2 
arbitrary correspondences gives an F 
compatible with the plane. 

In le5 we saw that if all seven points are in a 
plane, then 
 
 
and                       for any epipole e
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xT
k Fyk = 0 , xk = Hyk, k = 1 . . . 7

F = [e]⇥H
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Degensac
If six points are in a plane 
 
 
                      for 

!
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xT
k Fyk = 0 , k = 1 . . . 7 xk = Hyk, k = 1 . . . 6

F = [e]⇥H e 2 R3 , eT (Hx7 ⇥ y7) = 0
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Degensac
If six points are in a plane 
 
 
                      for 

!
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xT
k Fyk = 0 , k = 1 . . . 7 xk = Hyk, k = 1 . . . 6

F = [e]⇥H e 2 R3 , eT (Hx7 ⇥ y7) = 0
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Degensac
If six points are in a plane 
 
 
                      for 

!

For five points in the plane 
 
 
define two lines that intersect in e. F will have all 
points consistent with H as inliers. 
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xT
k Fyk = 0 , k = 1 . . . 7 xk = Hyk, k = 1 . . . 6

x6 ⇥ (Hy6) and x7 ⇥ (Hy7)

F = [e]⇥H e 2 R3 , eT (Hx7 ⇥ y7) = 0
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Degensac
If six points are in a plane 
 
 
                      for 

!

For five points in the plane 
 
 
define two lines that intersect in e. F will have all 
points consistent with H as inliers. 

Also used in plane+parallax algorithm
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xT
k Fyk = 0 , k = 1 . . . 7 xk = Hyk, k = 1 . . . 6

x6 ⇥ (Hy6) and x7 ⇥ (Hy7)

F = [e]⇥H e 2 R3 , eT (Hx7 ⇥ y7) = 0
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Degensac - detection

From F and                           we can compute a 
homography 
 
where  
 
and 
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{xk $ yk}3
k=1

H = A� e1(M�1b)T

A = [e1]⇥F
M = [x1 x2 x3]

T

bk = (xk ⇥Ayk)T (xk ⇥ e1)||xk ⇥ e1||�2
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From F and                           we can compute a 
homography 
 
where  
 
and 

This H is now checked for two additional 
inliers. If found, F is said to be H-degenerate
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{xk $ yk}3
k=1

H = A� e1(M�1b)T

A = [e1]⇥F
M = [x1 x2 x3]

T

bk = (xk ⇥Ayk)T (xk ⇥ e1)||xk ⇥ e1||�2

Degensac - detection
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There are                    ways to pick five 
points from 7. 

But, if we pick the 3 points that define H as  

We will have covered all 21 permutations. 
Thus at most five H need to be computed 

and tested to find out if F is H-
degenerate.
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✓
7
5

◆
= 21

{1, 2, 3}, {4, 5, 6}, {1, 2, 7}, {4, 5, 7}, {3, 6, 7}

Degensac - detection
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Degensac

DEGENSAC algorithm
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1. Select 7 random correspondences and estimate F	

2. IF best support this far	

3.     IF H-degeneracy	

4.        Do inner RANSAC and estimate F 
           from H and 2 correspondences 
           that are inconsistent with H 
	
 	
 (Plane+Parallax algorithm)	

5.        IF new F has even bigger support, store F	

6.        ELSE store H
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Paper to discuss next week…

Ondrej Chum and Jiri Matas, Matching with 
PROSAC -- Progressive Sample 
Consensus, CVPR’05
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