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Overview
• Rotation group SO(3) 
• Rotation averaging 
• Rotation interpolation 
• Rigid bodies, SE(3) 
• SE(3) interpolation 
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The rotation group SO(3)

A rotation, R, is an action operating on points, x,y, in R3: 
!
1. It preserves distances: 
!
!
2. It is orthogonal: 
!
3. It preserves handedness:  
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y = Rx

||yk � yl|| = ||xk � xl||

RTR = I

R(x⇥ y) = (Rx)⇥ (Ry)
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The rotation group SO(3)
1. The set of all 3x3 matrices R that fulfill: 
!
!
2. A group operation 
!
!
3. An identity element 
!
!
4. An inverse
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⌦ =
�
R|RTR = I, detR = 1

 

R1,R2 2 ⌦ ) R1R2 2 ⌦

I,R 2 ⌦ ) IR = RI = R

R�1 = RT 2 ⌦
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The rotation group SO(3)
1. The set of all unit quaternions q: 
!
2. A group operation 
!
!
3. An identity element 
!
!
4. An inverse
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q = (cos↵/2, ˆn sin↵/2)

q1,q2 2 Spin(3) ) q1q2 2 Spin(3)

qI ,q 2 Spin(3) ) qIq = qqI = q

q�1 = q⇤ 2 Spin(3)
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The rotation group SO(3)

Intermediate rotations between two rotations R1 
and R2 are obtained as: 

!
!
Spherical Linear Interpolation (SLeRP) 
K. Shoemake, SIGGRAPH’85 

(Paper for next week) 

Uses group operations, and is thus on SO(3)
!6

R(R1,R2,�) = R1exp(� log(R
T
1 R2))
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The rotation group SO(3)
The SLeRP construction is a geodesic: 
!
The shortest trajectory between two points on a manifold. 
!
For quaternion SLeRP, the geodesic is 

a great arc on the unit ball in R4.

!7

q(q1,q2,�) = q1exp(� log(q⇤
1q2))



June 10, 2014 Rotations and Rigid Body Motion

Computer Vision Laboratory

The rotation group SO(3)
The SLeRP construction is a geodesic: 
!
The shortest trajectory between two points on a manifold. 
!
For quaternion SLeRP, the geodesic is 

a great arc on the unit ball in R4.
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q(q1,q2,�) = q1exp(� log(q⇤
1q2))

=
sin(1� �)✓

sin ✓
q1 +

sin�✓

sin ✓
q2
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The rotation group SO(3)
Rotations may be more compactly represented using 

axis-angle vectors 
!
This representation is closely related to the 

logarithm:                                    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q = (cos↵/2, ˆn sin↵/2)

log(q) = (0,↵ˆn)

�
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The rotation group SO(3)
The logarithm also induces a natural metric on SO(3): 
!
 

!10

log(q) = (0,↵ˆn)

log(R) = ↵

2

4
0 �n3 n2

n3 0 �n1

�n2 n1 0

3

5
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The rotation group SO(3)
The logarithm also induces a natural metric on SO(3): 
!
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log(q) = (0,↵ˆn)

log(R) = ↵

2

4
0 �n3 n2

n3 0 �n1

�n2 n1 0

3

5

d(q1,q2) = || log(q⇤
1q2)||

d(R1,R2) =
1p
2

||log(RT
1 R2)||
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Rotation averaging
In Euclidean space an average vector is defined as: 
!
!
!
with the well known solution:
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xavg =
1

N

NX

n=1

xn

xavg = argmin
x

⇤

NX

n=1

||x⇤ � xn||2
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Rotation averaging
In Euclidean space an average vector is defined as: 
!
!
!
Averages are useful for: 
• Fusion of several measurements 
• Representative vectors in vector quantisation 

(e.g. K-means) 
• etc.
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xavg = argmin
x

⇤

NX

n=1

||x⇤ � xn||2
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Rotation averaging
For rotations, summing rotations or quaternions, and 

dividing by the number elements gives us a result 
outside SO(3), so this is not the way to average here. 

!
!
!
!

!14

Ravg = argmin
R⇤

NX

n=1

d(Rn,R
⇤)2
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Rotation averaging
For rotations, summing rotations or quaternions, and 

dividing by the number elements gives us a result 
outside SO(3), so this is not the way to average here. 

!
!
!
instead, we should use the natural metric 
!
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Ravg = argmin

R⇤

NX

n=1

|| log(RT
nR

⇤
)||2

Ravg = argmin
R⇤

NX

n=1

d(Rn,R
⇤)2
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Rotation averaging
Computing the average rotation using the natural metric 

requires iterative non-linear optimization. 
In [Gramkow IJCV’01] this is compared to averaging 

followed by orthogonalization, i.e.: 
!
!

!16

UDVT = svd

"
NX

n=1

Rn

#

Ravg ⇡ USVT , where S = diag(1, 1, . . . , det(UVT )
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Rotation averaging
Computing the average rotation using the natural metric requires 

iterative non-linear optimization. 
In [Gramkow IJCV’01] this is compared to averaging followed by 

orthogonalization, 
and to a re-normalised unit quaternion average: 
!
!
!
Both turn out to be quite good approximations. Quaternions are 

slightly more accurate, and also faster.       
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q̃avg =
NX

n=1

qn qavg ⇡ q̃avg/||qavg||
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Rotation averaging
Computing the average rotation using the natural metric requires 

iterative non-linear optimization. 
In [Gramkow IJCV’01] this is compared to averaging followed by 

orthogonalization, 
and to a re-normalised unit quaternion average: 
!
!
!
Both turn out to be quite good approximations. Quaternions are 

slightly more accurate, and also faster.  
Also: Hartley suggests using the L1 norm instead if the rotation 
set has outliers.
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q̃avg =
NX

n=1

qn qavg ⇡ q̃avg/||qavg||
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Rotation interpolation
For interpolation we have already mentioned the SLeRP 

construction. 
!
!
!
This is the geodesic between  

two rotations. 
!
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q(q1,q2,�) = q1exp(� log(q⇤
1q2))
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Higher order curves were defined already 
by Shoemake in his SIGGRAPH85 
paper, by applying SLeRP recursively. 

!
- Not differentiable 
- only C1 continuous (1:st derivative)

!20

Rotation interpolation
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Kim, Kim, Shin SIGGRAPH’95 introduced 
a closed form expression for SO(3) 
interpolation with continuous higher order 
derivatives 

!
 - Using cumulative B-splines 
 - Using logarithms of relative rotations 
 

!21

Rotation interpolation
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Cumulative B-splines

A regular B-spline curve can be written:

!22

p(t) =
KX

k=1

pkBk(t)
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Cumulative B-splines

A regular B-spline curve can be written:

!23

p(t) =
KX

k=1

pkBk(t)
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Cumulative B-splines

A regular B-spline curve can be written: 
!
!
!
In cumulative form: 

!24

p(t) =
KX

k=1

pkBk(t)

p(t) = p1B̃1(t) +
KX

k=2

(pk � pk�1)B̃k(t)
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B̃k(t) =
KX

l=k

B(t)
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Cumulative B-splines



June 10, 2014 Rotations and Rigid Body Motion

Computer Vision Laboratory

Interpolation

That was approximation, how about 
interpolation? 

!26
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Interpolation

That was approximation, how about 
interpolation? 

!
1. Solve a linear equation system to find 

dual basis or ”dual knots”, 
e.g. [Unser, SP magazine’99] 

!
2. Replace the basis functions.

!27
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Interpolation

Replace kernel by an interpolating kernel:

!28
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Interpolation

Replace kernel by an interpolating kernel:
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Bk(t) =

8
><

>:

1 if t = k

0 if t 2 Z \ k
y y 2 R otherwise.

X

k

Bk(t) = 1 8t 2 ⌦
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Cumulative form for interpolation

The weights are no longer in [0,1]

!30

B̃k(t) =
KX

l=k

B(t)
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Cumulative form on SO(3)

!
!
!
where

!31

!k = log(q⇤
k�1qk)

q(t) = qB̃1(t)
1

KY

k=2

exp(!k
˜Bk(t))
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Cumulative form on SO(3)

!
!
!
where 
!
- Derivatives are found using the chain rule 
 - Cn continuous if Bk is Cn

!32

!k = log(q⇤
k�1qk)

q(t) = qB̃1(t)
1

KY

k=2

exp(!k
˜Bk(t))
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Cubic spline continuity

                                      The standard cubic  
                                     spline is only C1

!33

h(t) =

8
><

>:

1� (a+ 3)t2 + (a+ 2)|t|3 if |t| < 1

a(|t|� 1)(|t|� 2)

2
if 1  |t|  2

0 otherwise.
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Cubic spline continuity

                                     With a quartic spline  
                                  we can obtain C2  
                                  continuity with  
                                  the same support  
                                  [Ringaby&Forssén ICCP14] 

!
!
Unfortunately the derivatives are still not very 

smooth, thus a small improvement in practise :-(
!34
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Rotation interpolation
Plotting R(t) in the log space  
!
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Rotation interpolation
Plotting R(t) in the log space  
!

                                                    In SO(3)  
                                             

!36

Im(log(q)) = ↵ˆn
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Full rigid body motion

 Both R(t) and p(t) should be interpolated. 
!
From physics we know this: 
!
    A rigid body will continue to move according to 

its initial velocity and angular velocity, until 
affected by external forces. 

!37
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Full rigid body motion

 Both R(t) and p(t) should be interpolated. 
!
In Computer Graphics Imaging (CGI) this is 

commonly done using: 
!
and 

!38

pint(p1,p2,�) = p1 + �(p2 � p1), � 2 [0, 1]

Rint(R1,R2,�) = R1exp(� log(RT
1 R2))
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Full rigid body motion

 Both R(t) and p(t) should be interpolated. 
!
The joint of R and t defines the special Euclidean 

group SE(3). An element T in SE(3) is an action 
on a 3D point p: 

!

!39


p2

1

�
= T


p1

1

�
=


R t
0T 1

� 
p1

1

�



June 10, 2014 Rotations and Rigid Body Motion

Computer Vision Laboratory

Full rigid body motion

The recent paper: 
S. Lovegrove, A. Patron-Perez, G. Sibely, Spline 

Fusion: A continuous-time representation for 
visual-inertial fusion with application to rolling 
shutter cameras, BMVC2013 

Proposes a SLeRP-like construction on SE(3): 
!
!
Used together with Shin,Shin,Kim style splines.

!40

T(T1,T2,�) = T1exp(� log(T�1
1 T2))
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Full rigid body motion
Interesting idea, but here is what happens:

!41
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Full rigid body motion
!
!
Expansion of the SE(3) tangent reveals why: 

!42

log(T�1
1 T2) = log


RT

1 R2 RT
1 (t2 � t1)

0T
1

�

T(T1,T2,�) = T1exp(� log(T�1
1 T2))
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Full rigid body motion
!
!
Expansion of the SE(3) tangent reveals why: 
!
!
!
Correct expression, used in e.g. CGI: 

!43

log(T�1
1 T2) = log


RT

1 R2 RT
1 (t2 � t1)

0T
1

�

T(T1,T2,�) = T1exp(� log(T�1
1 T2))

T(T1,T2,�) =


R1 exp(� log(RT

1 R2)) t1 + �(t2 � t1)
0T

1

�
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Full rigid body motion
Compared to SE(3) interpolation, separate 

interpolation of R(t) and p(t) has the following 
advantages: 

!
- Knot density may be set differently on R(t) and 

p(t). Used e.g. in [Ringaby&Forssén ICCV’11] 
- Newton may rest in his grave.
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Papers to discuss next week…
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K. Shoemake, Animating rotation with 
quaternion curves, SIGGRAPH’85 

and  
Kim, Kim, Shin, A General Construction 
Scheme for Unit Quaternion Curves with 
Simple High Order Derivatives, 
SIGGRAPH’95
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