Geometry for Computer Vision

Lecture 7b
Rotations and Rigid body motion

Per-Erik Forssén

Overview

- Rotation group SO(3)
- Rotation averaging
- Rotation interpolation
- Rigid bodies, SE(3)
- SE(3) interpolation

The rotation group SO (3)

A rotation, \mathbf{R}, is an action operating on points, \mathbf{x}, \mathbf{y}, in R^{3} :

$$
\mathbf{y}=\mathbf{R} \mathbf{x}
$$

1. It preserves distances:

$$
\left\|\mathbf{y}_{k}-\mathbf{y}_{l}\right\|=\left\|\mathbf{x}_{k}-\mathbf{x}_{l}\right\|
$$

2. It is orthogonal: $\quad \mathbf{R}^{T} \mathbf{R}=\mathbf{I}$
3. It preserves handedness:

$$
\mathbf{R}(\mathbf{x} \times \mathbf{y})=(\mathbf{R} \mathbf{x}) \times(\mathbf{R} \mathbf{y})
$$

The rotetion oroun

1. The set of all 3×3 matrices \mathbf{R} that fulfill:

$$
\Omega=\left\{\mathbf{R} \mid \mathbf{R}^{T} \mathbf{R}=\mathbf{I}, \operatorname{det} \mathbf{R}=1\right\}
$$

2. A group operation

$$
\mathbf{R}_{1}, \mathbf{R}_{2} \in \Omega \quad \Rightarrow \quad \mathbf{R}_{1} \mathbf{R}_{2} \in \Omega
$$

3. An identity element

$$
\mathbf{I}, \mathbf{R} \in \Omega \quad \Rightarrow \quad \mathbf{I R}=\mathbf{R I}=\mathbf{R}
$$

4. An inverse

$$
\mathbf{R}^{-1}=\mathbf{R}^{T} \in \Omega
$$

The rotation group $\mathrm{SO}(3)$

1. The set of all unit quaternions \mathbf{q} :

$$
\mathbf{q}=(\cos \alpha / 2, \hat{\mathbf{n}} \sin \alpha / 2)
$$

2. A group operation

$$
\mathbf{q}_{1}, \mathbf{q}_{2} \in \operatorname{Spin}(3) \quad \Rightarrow \quad \mathbf{q}_{1} \mathbf{q}_{2} \in \operatorname{Spin}(3)
$$

3. An identity element

$$
\mathbf{q}_{I}, \mathbf{q} \in \operatorname{Spin}(3) \quad \Rightarrow \quad \mathbf{q}_{I} \mathbf{q}=\mathbf{q} \mathbf{q}_{I}=\mathbf{q}
$$

4. An inverse

$$
\mathbf{q}^{-1}=\mathbf{q}^{*} \in \operatorname{Spin}(3)
$$

The rotation group $\mathrm{SO}(3)$

Intermediate rotations between two rotations \mathbf{R}_{1} and \mathbf{R}_{2} are obtained as:

$$
\mathbf{R}\left(\mathbf{R}_{1}, \mathbf{R}_{2}, \lambda\right)=\mathbf{R}_{1} \exp \left(\lambda \log \left(\mathbf{R}_{1}^{T} \mathbf{R}_{2}\right)\right)
$$

Spherical Linear Interpolation (SLeRP)
K. Shoemake, SIGGRAPH'85
(Paper for next week)

Uses group operations, and is thus on SO (3)

The rotation group $\mathrm{SO}(3)$

The SLeRP construction is a geodesic:

The shortest trajectory between two points on a manifold.

For quaternion SLeRP, the geodesic is a great arc on the unit ball in \mathbf{R}^{4}.

$$
\mathbf{q}\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \lambda\right)=\mathbf{q}_{1} \exp \left(\lambda \log \left(\mathbf{q}_{1}^{*} \mathbf{q}_{2}\right)\right)
$$

The rotation group $\mathrm{SO}(3)$

The SLeRP construction is a geodesic:

The shortest trajectory between two points on a manifold.

For quaternion SLeRP, the geodesic is a great arc on the unit ball in \mathbf{R}^{4}.

$$
\begin{aligned}
\mathbf{q}\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \lambda\right) & =\mathbf{q}_{1} \exp \left(\lambda \log \left(\mathbf{q}_{1}^{*} \mathbf{q}_{2}\right)\right) \\
& =\frac{\sin (1-\lambda) \theta}{\sin \theta} \mathbf{q}_{1}+\frac{\sin \lambda \theta}{\sin \theta} \mathbf{q}_{2}
\end{aligned}
$$

The rotation group $\mathrm{SO}(3)$

Rotations may be more compactly represented using axis-angle vectors

This representation is closely related to the logarithm:

$$
\begin{aligned}
& \mathbf{q}=(\cos \alpha / 2, \hat{\mathbf{n}} \sin \alpha / 2) \\
& \log (\mathbf{q})=(0, \alpha \hat{\mathbf{n}})
\end{aligned}
$$

The rotation group $\mathrm{SO}(3)$

The logarithm also induces a natural metric on $\mathrm{SO}(3)$:

$$
\begin{aligned}
& \log (\mathbf{q})=(0, \alpha \hat{\mathbf{n}}) \\
& \log (\mathbf{R})=\alpha\left[\begin{array}{ccc}
0 & -n_{3} & n_{2} \\
n_{3} & 0 & -n_{1} \\
-n_{2} & n_{1} & 0
\end{array}\right]
\end{aligned}
$$

The rotation group $\mathrm{SO}(3)$

The logarithm also induces a natural metric on $\mathrm{SO}(3)$:

$$
\begin{aligned}
& \log (\mathbf{q})=(0, \alpha \hat{\mathbf{n}}) \\
& \log (\mathbf{R})=\alpha\left[\begin{array}{ccc}
0 & -n_{3} & n_{2} \\
n_{3} & 0 & -n_{1} \\
-n_{2} & n_{1} & 0
\end{array}\right] \\
& d\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)=\left\|\log \left(\mathbf{q}_{1}^{*} \mathbf{q}_{2}\right)\right\| \\
& d\left(\mathbf{R}_{1}, \mathbf{R}_{2}\right)=\frac{1}{\sqrt{2}}\left\|\log \left(\mathbf{R}_{1}^{T} \mathbf{R}_{2}\right)\right\|
\end{aligned}
$$

Rotation averaging

In Euclidean space an average vector is defined as:

$$
\mathbf{x}_{\mathrm{avg}}=\arg \min _{\mathbf{x}^{*}} \sum_{n=1}^{N}\left\|\mathbf{x}^{*}-\mathbf{x}_{n}\right\|^{2}
$$

with the well known solution:

$$
\mathbf{x}_{\mathrm{avg}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}
$$

Rotation averaging

In Euclidean space an average vector is defined as:

$$
\mathbf{x}_{\operatorname{avg}}=\arg \min _{\mathbf{x}^{*}} \sum_{n=1}^{N}\left\|\mathbf{x}^{*}-\mathbf{x}_{n}\right\|^{2}
$$

Averages are useful for:

- Fusion of several measurements
- Representative vectors in vector quantisation (e.g. K-means)
- etc.

Rotation averaging

For rotations, summing rotations or quaternions, and dividing by the number elements gives us a result outside $\mathrm{SO}(3)$, so this is not the way to average here.

$$
\mathbf{R}_{\mathrm{avg}}=\arg \min _{\mathbf{R}^{*}} \sum_{n=1}^{N} d\left(\mathbf{R}_{n}, \mathbf{R}^{*}\right)^{2}
$$

Rotation averaging

For rotations, summing rotations or quaternions, and dividing by the number elements gives us a result outside $\mathrm{SO}(3)$, so this is not the way to average here.

$$
\mathbf{R}_{\mathrm{avg}}=\arg \min _{\mathbf{R}^{*}} \sum_{n=1}^{N} d\left(\mathbf{R}_{n}, \mathbf{R}^{*}\right)^{2}
$$

instead, we should use the natural metric

$$
\mathbf{R}_{\mathrm{avg}}=\arg \min _{\mathbf{R}^{*}} \sum_{n=1}^{N}\left\|\log \left(\mathbf{R}_{n}^{T} \mathbf{R}^{*}\right)\right\|^{2}
$$

Rotation averaging

Computing the average rotation using the natural metric requires iterative non-linear optimization.
In [Gramkow IJCV'01] this is compared to averaging followed by orthogonalization, i.e.:

$$
\mathbf{U D} \mathbf{V}^{T}=\operatorname{svd}\left[\sum_{n=1}^{N} \mathbf{R}_{n}\right]
$$

$\mathbf{R}_{\mathrm{avg}} \approx \mathbf{U S V}^{T}, \quad$ where $\quad \mathbf{S}=\operatorname{diag}\left(1,1, \ldots, \operatorname{det}\left(\mathbf{U V}^{T}\right)\right.$

Rotation averaging

Computing the average rotation using the natural metric requires iterative non-linear optimization.
In [Gramkow IJCV'01] this is compared to averaging followed by orthogonalization,
and to a re-normalised unit quaternion average:

$$
\tilde{\mathbf{q}}_{\mathrm{avg}}=\sum_{n=1}^{N} \mathbf{q}_{n}
$$

$$
\mathbf{q}_{\mathrm{avg}} \approx \tilde{\mathbf{q}}_{\mathrm{avg}} /\left\|\mathbf{q}_{\mathrm{avg}}\right\|
$$

Both turn out to be quite good approximations. Quaternions are slightly more accurate, and also faster.

Rotation averaging

Computing the average rotation using the natural metric requires iterative non-linear optimization.
In [Gramkow IJCV'01] this is compared to averaging followed by orthogonalization,
and to a re-normalised unit quaternion average:

$$
\tilde{\mathbf{q}}_{\mathrm{avg}}=\sum_{n=1}^{N} \mathbf{q}_{n}
$$

$$
\mathbf{q}_{\mathrm{avg}} \approx \tilde{\mathbf{q}}_{\mathrm{avg}} /\left\|\mathbf{q}_{\mathrm{avg}}\right\|
$$

Both turn out to be quite good approximations. Quaternions are slightly more accurate, and also faster.
Also: Hartley suggests using the L_{1} norm instead if the rotation set has outliers.

Rotation interpolation

For interpolation we have already mentioned the SLeRP construction.

$$
\mathbf{q}\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \lambda\right)=\mathbf{q}_{1} \exp \left(\lambda \log \left(\mathbf{q}_{1}^{*} \mathbf{q}_{2}\right)\right)
$$

This is the geodesic between two rotations.

Rotation interpolation

Higher order curves were defined already by Shoemake in his SIGGRAPH85 paper, by applying SLeRP recursively.

- Not differentiable
- only C^{1} continuous (1:st derivative)

Rotation interpolation

Kim, Kim, Shin SIGGRAPH'95 introduced a closed form expression for $\mathrm{SO}(3)$ interpolation with continuous higher order derivatives

- Using cumulative B-splines
- Using logarithms of relative rotations

Cumulative B-splines

A regular B-spline curve can be written:

$$
\mathbf{p}(t)=\sum_{k=1}^{K} \mathbf{p}_{k} B_{k}(t)
$$

Cumulative B-splines

A regular B-spline curve can be written:

Cumulative B-splines

A regular B-spline curve can be written:

$$
\mathbf{p}(t)=\sum_{k=1}^{K} \mathbf{p}_{k} B_{k}(t)
$$

In cumulative form:

$$
\mathbf{p}(t)=\mathbf{p}_{1} \tilde{B}_{1}(t)+\sum_{k=2}^{K}\left(\mathbf{p}_{k}-\mathbf{p}_{k-1}\right) \tilde{B}_{k}(t)
$$

Cumulative B-splines

Interpolation

That was approximation, how about interpolation?

Interpolation

That was approximation, how about interpolation?

1. Solve a linear equation system to find dual basis or "dual knots", e.g. [Unser, SP magazine'99]
2. Replace the basis functions.

Interpolation

Replace kernel by an interpolating kernel:

Interpolation

Replace kernel by an interpolating kernel:

Cumulative form for interpolation

The weights are no longer in $[0,1]$

Cumulative form on $\mathrm{SO}(3)$

$$
\mathbf{q}(t)=\mathbf{q}_{1}^{\tilde{B}_{1}(t)} \prod_{k=2}^{K} \exp \left(\omega_{k} \tilde{B}_{k}(t)\right)
$$

where $\quad \omega_{k}=\log \left(\mathbf{q}_{k-1}^{*} \mathbf{q}_{k}\right)$

Cumulative form on $\mathrm{SO}(3)$

$$
\mathbf{q}(t)=\mathbf{q}_{1}^{\tilde{B}_{1}(t)} \prod_{k=2}^{K} \exp \left(\omega_{k} \tilde{B}_{k}(t)\right)
$$

where $\quad \omega_{k}=\log \left(\mathbf{q}_{k-1}^{*} \mathbf{q}_{k}\right)$

- Derivatives are found using the chain rule - C^{n} continuous if B_{k} is C^{n}

Cubic spline continuity

$$
h(t)= \begin{cases}1-(a+3) t^{2}+(a+2)|t|^{3} & \text { if }|t|<1 \\ a(|t|-1)(|t|-2)^{2} & \text { if } 1 \leq|t| \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Cubic spline continuity

With a quartic spline we can obtain C^{2} continuity with the same support [Ringaby\&Forssén ICCP14]

Unfortunately the derivatives are still not very smooth, thus a small improvement in practise :-(

Rotation interpolation

Plotting $R(t)$ in the log space

Rotation interpolation

Plotting $R(t)$ in the log space

In SO(3)

$\operatorname{Im}(\log (\mathbf{q}))=\alpha \hat{\mathbf{n}}$

Full rigid body motion

Both $\mathbf{R}(\mathrm{t})$ and $\mathbf{p}(\mathrm{t})$ should be interpolated.

From physics we know this:

A rigid body will continue to move according to its initial velocity and angular velocity, until affected by external forces.

Full rigid body motion

Both $\mathbf{R}(\mathrm{t})$ and $\mathbf{p}(\mathrm{t})$ should be interpolated.

In Computer Graphics Imaging (CGI) this is commonly done using:

$$
\mathbf{R}_{\mathrm{int}}\left(\mathbf{R}_{1}, \mathbf{R}_{2}, \lambda\right)=\mathbf{R}_{1} \exp \left(\lambda \log \left(\mathbf{R}_{1}^{T} \mathbf{R}_{2}\right)\right)
$$

and
$\mathbf{p}_{\text {int }}\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \lambda\right)=\mathbf{p}_{1}+\lambda\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right), \quad \lambda \in[0,1]$

Full rigid body motion

Both $\mathbf{R}(\mathrm{t})$ and $\mathbf{p}(\mathrm{t})$ should be interpolated.

The joint of \mathbf{R} and \mathbf{t} defines the special Euclidean group SE(3). An element \mathbf{T} in $\operatorname{SE}(3)$ is an action on a 3D point \mathbf{p} :

$$
\left[\begin{array}{c}
\mathbf{p}_{2} \\
1
\end{array}\right]=\mathbf{T}\left[\begin{array}{c}
\mathbf{p}_{1} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{1} \\
1
\end{array}\right]
$$

Full rigid body motion

The recent paper:
S. Lovegrove, A. Patron-Perez, G. Sibely, Spline Fusion: A continuous-time representation for visual-inertial fusion with application to rolling shutter cameras, BMVC2013
Proposes a SLeRP-like construction on SE(3):

$$
\mathbf{T}\left(\mathbf{T}_{1}, \mathbf{T}_{2}, \lambda\right)=\mathbf{T}_{1} \exp \left(\lambda \log \left(\mathbf{T}_{1}^{-1} \mathbf{T}_{2}\right)\right)
$$

Used together with Shin,Shin,Kim style splines.

Full rigid body motion

Interesting idea, but here is what happens:

Trajectory from SE(3)
Trajectory from R^{3} and SO (3)

Full rigid body motion

$$
\mathbf{T}\left(\mathbf{T}_{1}, \mathbf{T}_{2}, \lambda\right)=\mathbf{T}_{1} \exp \left(\lambda \log \left(\mathbf{T}_{1}^{-1} \mathbf{T}_{2}\right)\right)
$$

Expansion of the $\operatorname{SE}(3)$ tangent reveals why:

$$
\log \left(\mathbf{T}_{1}^{-1} \mathbf{T}_{2}\right)=\log \left[\begin{array}{cc}
\mathbf{R}_{1}^{T} \mathbf{R}_{2} & \mathbf{R}_{1}^{T}\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right) \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

Full rigid body motion

$$
\mathbf{T}\left(\mathbf{T}_{1}, \mathbf{T}_{2}, \lambda\right)=\mathbf{T}_{1} \exp \left(\lambda \log \left(\mathbf{T}_{1}^{-1} \mathbf{T}_{2}\right)\right)
$$

Expansion of the $\operatorname{SE}(3)$ tangent reveals why:

$$
\log \left(\mathbf{T}_{1}^{-1} \mathbf{T}_{2}\right)=\log \left[\begin{array}{cc}
\mathbf{R}_{1}^{T} \mathbf{R}_{2} & \mathbf{R}_{1}^{T}\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right) \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

Correct expression, used in e.g. CGI:
$\mathbf{T}\left(\mathbf{T}_{1}, \mathbf{T}_{2}, \lambda\right)=\left[\begin{array}{cc}\mathbf{R}_{1} \exp \left(\lambda \log \left(\mathbf{R}_{1}^{T} \mathbf{R}_{2}\right)\right) & \mathbf{t}_{1}+\lambda\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right) \\ \mathbf{0}^{T} & 1\end{array}\right]$

Full rigid body motion

Compared to SE(3) interpolation, separate interpolation of $\mathbf{R}(\mathrm{t})$ and $\mathbf{p}(\mathrm{t})$ has the following advantages:

- Knot density may be set differently on $\mathbf{R}(\mathrm{t})$ and $\mathbf{p (t)}$. Used e.g. in [Ringaby\&Forssén ICCV'11]
- Newton may rest in his grave.

Papers to discuss next week...

K. Shoemake, Animating rotation with quaternion curves, SIGGRAPH'85
and
Kim, Kim, Shin, A General Construction Scheme for Unit Quaternion Curves with Simple High Order Derivatives, SIGGRAPH'95

