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Overview

Rotation group SO(3)
Rotation averaging
Rotation interpolation
Rigid bodies, SE(3)
- SE(3) interpolation
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The rotation group SO(3)

A rotation, R, is an action operating on points, x,y, in R3:
y = Rx

1. It preserves distances:

ye —yiull = ||xx — x|

2. It is orthogonal: RR =1

3. It preserves handedness:
R(x x y) = (Rx) x (Ry)
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The rotation group SO(3)

1. The set of all 3x3 matrices R that fulfill:

Q={RR'R=1IdetR =1}

2. A group operation

Rl,RQEQ = Ri{R, €
3. An identity element

ILReQ? = IR=RI=R

4. An inverse
R I1=R'eQ
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The rotation group SO(3)

1. The set of all unit quaternions q:
q = (cosa/2,nsina/2)

2. A group operation

d1,92 € Spin(?)) = q192 < Spin(?))

3. An identity element

ar,q € Spin(3) = qrq=4qqs =q
4. An inverse

q ' =q* € Spin(3)
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The rotation group SO(3)

Intermediate rotations between two rotations R
and R> are obtained as:

R(R;,R2,\) = Riexp(Alog(R R»))

Spherical Linear Interpolation (SLeRP)

K. Shoemake, SIGGRAPH’85
(Paper for next week)

Uses group operations, and is thus on SO(3)
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The rotation group SO(3)

The SLeRP construction is a geodesic:

The shortest trajectory between two points on a manifold.

For quaternion SLeRP, the geodesic is
a great arc on the unit ball in R%.

qa(q1,92,\) = qrexp(Alog(qiqs))
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The rotation group SO(3)

The SLeRP construction is a geodesic:

The shortest trajectory between two points on a manifold.

For quaternion SLeRP, the geodesic is
a great arc on the unit ball in R%.

q(q17 q2, >\) — qleXp(A log(qiqz)) N
AN
sin(1 — \)6 SHPEEES -
2

qi

sin 0 sin 0
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The rotation group SO(3)

Rotations may be more compactly represented using
axis-angle vectors

Z\
This representation is closely related to the N

logarithm:

q = (cosa/2,nsina/2) QL

log(q) — (Ov Ozfl)
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The rotation group SO(3)

The logarithm also induces a natural metric on SO(3):

log(q) — (07 aﬁ)

0 —T3 (1%

log(R) =«a | ns3 0 —ny
—T19 T 0
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The rotation group SO(3)

The logarithm also induces a natural metric on SO(3):

log(q) — (Ov aﬁ)

0 —T3 (1%

log(R) =«a | ns3 0 —ny
—T19 T 0

d((h,(h) — H 10g(q>1KCI2)‘

1
d(R1,R2) = ﬁHlOg(R{Rz)H
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Rotation averaging

In Euclidean space an average vector is defined as:
N

Xavg — al'g min Z HX* — XnH2
X*

n=1
with the well known solution:

1 N
Xavg — N E Xn
n=1
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Rotation averaging

In Euclidean space an average vector is defined as:
N

Xavg = arg minz |x* — x,||?
X*

n=1
Averages are useful for:

- Fusion of several measurements

- Representative vectors in vector quantisation
(e.g. K-means)

- etc.
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Rotation averaging

For rotations, summing rotations or quaternions, and
dividing by the number elements gives us a result
outside SO(3), so this is not the way to average here.

N

R.ve = arg Hﬁiﬂp d(R.,, R*)?

n=1
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Rotation averaging

For rotations, summing rotations or quaternions, and
dividing by the number elements gives us a result
outside SO(3), so this is not the way to average here.

N

. *\ 2
Rave = arg min d(R,,R")
n=1
Instead, we should use the natural metric

Ry = argmin Z |log(RTRY)|[?
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Rotation averaging

Computing the average rotation using the natural metric
requires iterative non-linear optimization.

In [Gramkow IJCV’01] this is compared to averaging
followed by orthogonalization, i.e.:

L
UDVT = svd Z R,
n=1 i

R * USV' | where S=diag(l,1,...,det(UV")
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Rotation averaging

Computing the average rotation using the natural metric requires
iterative non-linear optimization.

In [Gramkow IJCV’01] this is compared to averaging followed by
orthogonalization,

and to a re-normalised unit quaternion average:

Qavg = Z An Qavg & Qave/||Qave]]

Both turn out to be qwte good approximations. Quaternions are
slightly more accurate, and also faster.
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Rotation averaging

Computing the average rotation using the natural metric requires
iterative non-linear optimization.

In [Gramkow IJCV’01] this is compared to averaging followed by
orthogonalization,

and to a re-normalised unit quaternion average:

Qavg = Z An Qavg & Qave/||Qave]]

Both turn out to be qwte good approximations. Quaternions are
slightly more accurate, and also faster.
Also: Hartley suggests using the L1 norm instead if the rotation
set has outliers.
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Rotation interpolation

For interpolation we have already mentioned the SLeRP
construction.

q(q1,92, ) = qrexp(Alog(qiqs))

This is the geodesic between
two rotations.
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Rotation interpolation

Higher order curves were defined already
by Shoemake in his SIGGRAPH85
paper, by applying SLeRP recursively.

- Not differentiable
- only C' continuous (1:st derivative)
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Rotation interpolation

Kim, Kim, Shin SIGGRAPH95 introduced
a closed form expression for SO(3)
interpolation with continuous higher order
derivatives

- Using cumulative B-splines
- Using logarithms of relative rotations
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Cumulative B-splines

A regular B-spline curve can be written:

p(t) = ) prB(t)
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Cumulative B-splines

A regular B-spline curve can be written:

K
_pt) =) prB(t)
S k=1

0 O s pt bt it s
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Cumulative B-splines

A regular B-spline curve can be written:

= prBi(t)

In cumulative form:

p(t) = p1Bi(t +Z Pi — Pr—1) B (?)
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Cumulative B-splines

Interpolation of grid points

0.0 — =
-1 0 4 5 6 7
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Interpolation

That was approximation, how about
interpolation?
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Interpolation

That was approximation, how about
interpolation?

1. Solve a linear equation system to find
dual basis or "dual knots”,
e.g. [Unser, SP magazine’99]

2. Replace the basis functions.
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Interpolation

Replace kernel by an interpolating kernel:

1.0

08

0.6

04

0.2

0.0

=0g 1 2 3
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Interpolation

Replace kernel by an interpolating kernel:

1.0

0.8

0.6

04

0.2

0.0

-0.2

1

2

3

By (t)

f

1 ift=k
0 ifteZ\k
Yy € R otherwise.

> Br(t)=1 VteQ

k
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Cumulative form for interpolation

The weights are no longer in [0,1]

2

1.0

0.8 K

By (t) = Z B(t)

=k

25 2 1 0 1 2 3
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Cumulative form on SO(3)

~ K
a(t) = a,""" T exp(wiBi(t))
k=2

where Wi = lOg(q;Z_1Qk)
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Cumulative form on SO(3)

~ K
a(t) = a,""" T exp(wiBi(t))
k=2

where Wi = lOg(CIZ_1Qk)

- Derivatives are found using the chain rule
- C" continuous if Bk is C"
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Cubic spline continuity

- B(t)
- dB(t)y/ar ||

—=oe: | THe standard cubic
spline is only C’

(1—(a+3) 2+ (a+2t]? if|t| <1
a(|t| = 1)(|t] - 2)° if 1 <[tf <2

0 otherwise.

\
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Cubic spline continuity

e B(?)
~—  dB(t)/dt i

— = With @ quartic spline
we can obtain C?
continuity with

the same support
[Ringaby&Forssén ICCP14]

Unfortunately the derivatives are still not very

smooth, thus a small improvement in practise :-(
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Rotation interpolation

Plotting R(t) in the log space

nterpolated curve o-knot.., x-padding

June 10, 2014 Rotations and Rigid Body Motion




Rotation interpolation

Plotting R(t) in the log space

nterpolated curve o-knot._., x-padding
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Full rigid body motion

Both R(t) and p(t) should be interpolated.
From physics we know this:

A rigid body will continue to move according to
its initial velocity and angular velocity, until
affected by external forces.
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Full rigid body motion

Both R(t) and p(t) should be interpolated.

In Computer Graphics Imaging (CGl) this is
commonly done using:

Rint (R17 R27 >\) — Rlexp()\ 1Og(R{R2))
and

Pint(P1,P2,A) = p1 + A(p2 — p1), A €]0,1]
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Full rigid body motion

Both R(t) and p(t) should be interpolated.

The joint of R and t defines the special Euclidean
group SE(3). An element T in SE(3) is an action
on a 3D point p:

P1 R t

=1 o7 1
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Full rigid body motion

The recent paper:

S. Lovegrove, A. Patron-Perez, G. Sibely, Spline
Fusion: A continuous-time representation for
visual-inertial fusion with application to rolling
shutter cameras, BMVC2013

Proposes a SLeRP-like construction on SE(3):

T(T1, T, \) = Tiexp(Alog(T;'Ts))

Used together with Shin,Shin,Kim style splines.
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Full rigid body motion

Interesting idea, but here is what happens:

Trajectory from SE(3) Trajectory from R” and SO(3)
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Full rigid body motion

T(T1, T2, A) = Trexp(Alog(T7 ' T2))

Expansion of the SE(3) tangent reveals why:

RIiRy Ri(ty—t1)]

lOg(T 1T2) — lOg OT 1
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Full rigid body motion

T(T1, T2, A) = Trexp(Alog(T7 ' T2))

Expansion of the SE(3) tangent reveals why:

RIiRy Ri(ty—t1)]
0l 1

log(T7'T5) = log

Correct expression, used in e.g. CGl:

T _
T(Tl, T27 )\) _ R1 eXp()\i)OZg(Rl Rg)) tl —+ )\(IQ tl)
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Full rigid body motion

Compared to SE(3) interpolation, separate
interpolation of R(t) and p(t) has the following
advantages:

- Knot density may be set differently on R(t) and
p(t). Used e.g. in [Ringaby&Forssén ICCV’11]

- Newton may rest in his grave.
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Papers to discuss next week...

K. Shoemake, Animating rotation with
quaternion curves, SIGGRAPH'85

and
Kim, Kim, Shin, A General Construction
Scheme for Unit Quaternion Curves with
Simple High Order Derivatives,
SIGGRAPH’95
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