	P <i>n</i> P			
	• We can solve PnP by minimizing $\varepsilon_{PnP,GEO} = \sum_{k=1}^{n} d_{PP}(\mathbf{y}_k, \mathbf{y}'_k)^2$, where $\mathbf{y}'_k = \mathbf{R}\bar{\mathbf{x}}_k + \bar{\mathbf{t}}$,			
Geometry in Computer Vision				
Spring 2014 Lecture 7A Representations of 3D rotations	over $\mathbf{R} \in SO(3)$ and $\mathbf{t} \in \mathbb{R}^3$ • Initial solution from P3P • We need to parameterize $\mathbf{R} \in SO(3)$			
13 June 2014 Geometry in Computer Vision Klas Nordberg 1	13 June 2014 Geometry in Computer Vision 2 Klas Nordberg			
Stivi	Parameterization of SO(3)			
 A similar case appears in SfM, where we minimize 	• Each R \in SO(3) is a 3 $ imes$ 3 matrix that satisfies			
$\boldsymbol{\varepsilon}_{BA} = \sum_{k=1}^{m} \sum_{j=1}^{p} w_{kj} d_{\mathrm{PP}}(\mathbf{y}_{kj}, \mathbf{C}_k \mathbf{x}_j)^2,$	$\mathbf{R}^{T}\mathbf{R} = \mathbf{I}$ and $\det(\mathbf{R}) = +1$			
over the camera poses: $\mathbf{C}_{\mathbf{k}} \sim (\mathbf{R}_{\mathbf{k}} \mathbf{t}_{\mathbf{k}})$	 How can we change R to R' such that these constraints are maintained? 			
 Each rotation R_k ∈ SO(3) needs to be parameterized 				
13 June 2014 Geometry in Computer Vision 3 Klas Nordberg	13 June 2014 Geometry in Computer Vision 4 Klas Nordberg			

Axis-angle representation

- Any rotation **R** is characterized by
 - a rotation axis **n** (normalized) (2 dof)
 - a rotation angle α (1 dof)

such that ${\bf R}$ rotates the angle α about ${\bf n}$ according to the "right-hand rule"

 (\mathbf{n}, α) same R as $(-\mathbf{n}, -\alpha)$

13 June 2014

Geometry in Computer Vision Klas Nordberg

Rodrigues' rotation formula

- Given **R**, how do we determine **n** and α?
- Based on Rodrigues' formula:

$$\cos \alpha = \frac{\operatorname{trace}(\mathbf{R}) - 1}{2}, \qquad \qquad \frac{\mathbf{R} - \mathbf{R}^{\top}}{2} = \sin \alpha \, [\, \mathbf{\hat{n}} \,]_{\times},$$

• Notice: ambiguity at α = π

13 June 2014

Rodrigues' rotation formula

- Given (**n**, *α*), how do we determine **R**?
- Use Rodrigues' rotation formula:

```
\mathbf{R}(\hat{\mathbf{n}}, \alpha) = \hat{\mathbf{n}} \, \hat{\mathbf{n}}^\top + \cos \alpha \, (\mathbf{I} - \hat{\mathbf{n}} \, \hat{\mathbf{n}}^\top) + \sin \alpha \, [\, \hat{\mathbf{n}}\,]_{\times}.
```

 $\mathbf{R}(\hat{\mathbf{n}},\alpha) = \mathbf{I} + (1 - \cos \alpha) (\hat{\mathbf{n}} \, \hat{\mathbf{n}}^{\top} - \mathbf{I}) + \sin \alpha [\hat{\mathbf{n}}]_{\times}.$

$$\mathbf{R}(\hat{\mathbf{n}},\alpha) = \mathbf{I} + (1 - \cos \alpha) \left[\hat{\mathbf{n}} \right]_{\times}^2 + \sin \alpha \left[\hat{\mathbf{n}} \right]_{\times}.$$

13 June 2014

Geometry in Computer Vision Klas Nordberg

6

Using so(3) so(3) • $[\mathbf{m}]_{\times} \in$ so(3) has eigensystem: • so(3) is the set of 3×3 anti-symmetric matrices 0, +i |m|, -i |m|• Can be parameterized by $\mathbf{m} \in \mathbb{R}^3$: $[\mathbf{m}]_{\sim}$ eigenvalues • 2 alternative mappings $so(3) \rightarrow SO(3)$ \mathbf{m} , \mathbf{p} -i \mathbf{q} , \mathbf{p} +i \mathbf{q} eigenvectors - Matrix exponential Cayley transformation where (m, p, q) is a right-handed orthogonal basis in \mathbb{R}^3 Geometry in Computer Vision Geometry in Computer Vision 10 13 June 2014 9 13 June 2014 Klas Nordberg Klas Nordberg Matrix exponential Matrix exponential • The matrix exponential function is defined for • If **M** is diagonalized by unitary **E**: a square matrix **M** as $\mathbf{E}^*\mathbf{E} = \mathbf{I}$ $\mathbf{M} = \mathbf{E} \mathbf{D} \mathbf{E}^*$, **D** diagonal, eigenvalues eigenvectors $e^{\mathbf{M}} = \mathbf{I} + \mathbf{M} + \frac{1}{2}\mathbf{M}^2 + \frac{1}{6}\mathbf{M}^3 + \ldots = \sum_{k=0}^{\infty} \frac{1}{k!}\mathbf{M}^k,$ its exponential can be expressed as $\mathbf{e}^{\mathbf{M}} = \mathbf{E} \ \mathbf{e}^{\mathbf{D}} \ \mathbf{E}^{*} \qquad \exp \begin{pmatrix} d_{1} & 0 & \dots & 0 \\ 0 & d_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & d \end{pmatrix} = \begin{pmatrix} e^{d_{1}} & 0 & \dots & 0 \\ 0 & e^{d_{2}} & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & d \end{pmatrix}$ Geometry in Computer Vision Geometry in Computer Vision 13 June 2014 11 13 June 2014 12 Klas Nordberg Klas Nordberg

Cayley transformation Parameterization of SO(3) • If $\mathbf{M} = [a \mathbf{n}]_{\vee}$ for normalized \mathbf{n} and $a \in \mathbb{R}$: $C(\mathbf{M})$ $\mathbf{R} \in SO(3)$ $M \in so(3)$ $C(\mathbf{M}) = \mathbf{R}(\mathbf{n}, \alpha), \quad a = \tan(\alpha/2)$ $C(\mathbf{R})$ • Inverse transformation: The *C* mapping is easy to implement. $M = (I - R)(I + R)^{-1} = C(R)$ It can be differentiated w.r.t. $\mathbf{M} = [\mathbf{m}]_{\vee}$ But less trivial than (n, α) \rightarrow SO(3) Geometry in Computer Vision Geometry in Computer Vision 17 13 June 2014 13 June 2014 18 Klas Nordberg Klas Nordberg Quaternions Quaternions

 Quaternions can be seen as a generalization of complex numbers to the case where we have three distinct imaginary units:

$$q = a + i b + j c + k d$$

 \mathbb{H}

- Alternatively, we can see ℍ as an algebra on ℝ⁴, allowing us to multiply vectors in ℝ⁴ to produce vectors in ℝ⁴
- Alternatively, we can see \mathbb{H} as an algebra on $\mathbb{R} \times \mathbb{R}^3$, consisting of ordered pairs of a real number and a vector in \mathbb{R}^3
- q = (s, v) $\in \mathbb{H}$
- $|q|^2 = s^2 + |\mathbf{v}|^2$

19

13 June 2014

Geometry in Computer Vision Klas Nordberg

From \mathbb{H} to SO(3) Quaternions and SO(3) • Sandwich product: • Given unit guaternion $q = (q_1, q_2, q_3, q_4) = (\cos(\alpha/2), \sin(\alpha/2) n)$: $\mathbf{q} \circ \mathbf{p} \circ \mathbf{q}^{-1} = \dots = (\mathbf{0}, \mathbf{R}(\mathbf{n}, \alpha) \mathbf{u})$ $\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} = \begin{pmatrix} q_1^2 + q_2 - q_3^2 - q_4^2 & 2(q_2q_3 - q_1q_4) & 2(q_1q_3 + q_2q_4) \\ 2(q_2q_3 + q_1q_4) & q_1^2 - q_2 + q_3^2 - q_4^2 & 2(q_3q_4 - q_1q_2) \\ 2(q_2q_4 - q_1q_3) & 2(q_1q_2 + q_3q_4) & q_1^2 - q_2 - q_3^2 + q_4^2 \end{pmatrix}$ • Each rotation can be represented by a (A) quaternion q = (cos($\alpha/2$), sin($\alpha/2$) **n**) • Double embedding: both g and -g works • Each element in **R** is a quadratic function in q Geometry in Computer Vision Geometry in Computer Vision 13 June 2014 25 13 June 2014 26 Klas Nordberg Klas Nordberg From SO(3) to \mathbb{H} Parameterization of SO(3) • From the previous mapping: (A) $q_1^2 = \frac{1 + r_{11} + r_{22} + r_{33}}{4}, \qquad q_2^2 = \frac{1 + r_{11} - r_{22} - r_{33}}{4},$ $q \in \mathbb{H}$ $\mathbf{R} \in SO(3)$ |q|=1 $q_3^2 = \frac{1 - r_{11} + r_{22} - r_{33}}{4}, \qquad q_4^2 = \frac{1 - r_{11} - r_{22} + r_{33}}{4}.$ (B) and $r_{12} + r_{21} = 4 q_2 q_3,$ $r_{13} + r_{31} = 4 q_2 q_4,$ $r_{23} + r_{32} = 4 q_3 q_4,$ Both (A) and (B) are easy to implement. $r_{21} - r_{12} = 4 q_1 q_4,$ $r_{13} - r_{31} = 4 q_1 q_3,$ $r_{32} - r_{23} = 4 q_1 q_2.$ (A) can be differentiated w.r.t. unit quaternion $q \in \mathbb{R}^4$ (B) Geometry in Computer Vision Geometry in Computer Vision 13 June 2014 27 13 June 2014 28 Klas Nordberg Klas Nordberg

Euler angles

- We can decompose any **R** ∈ SO(3) into a product of 3 rotations around *fixed axes*
- For example:
 - $\mathbf{R} = \operatorname{Rot}_{z}(\alpha_{1}) \operatorname{Rot}_{x}(\alpha_{2}) \operatorname{Rot}_{z}(\alpha_{3})$
- $(\alpha_1, \alpha_2, \alpha_3)$ are the *Euler angles* of **R**

Euler angles

• There are straight-forward mappings

 $(\alpha_1, \alpha_2, \alpha_3) \leftrightarrow \mathbf{R} \in SO(3)$

• Notice: rotations about the z-axis always have an ambiguous representation:

R(
$$\alpha_1$$
, 0, α_3) = **R**(α_1 + Δ , 0, α_3 - Δ)

13 June 2014	Geometry in Computer Vision Klas Nordberg	29	13 June 2014	Geometry in Computer Vision Klas Nordberg	30

Euler angles

- This ambiguity implies that **D**, the derivatives of **R** with respect to (α₁, α₂, α₃) is rank deficient when α₂ = 0
- If Euler angles are use as a parameterization of **R** in a non-linear optimization, there will be a stationary point for all points (α_1 , 0, α_3) where the optimization can get stuck