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Geometry in Computer Vision

Spring 2010
Lecture 1

Projective Geometry
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A vector space
• A vector space V consists of a set of vectors

– Two vectors can be added
– A vector can be multiplied by a scalar
– Both operations result again in a vector in V
– Sets of  vectors can be linearly combined into a new vector

• The dimension of V =
maximal number of vectors which are linear independent

• Basis exists
• Orthogonality between two vectors defined if we have a 

scalar product
• Linear mappings are well-defined
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A projective space

• A projective space can be defined from V
in terms of equivalence classes:

– Two vectors u and v are equivalent if there 
exists a non-zero scalar s such that u = s v
⇒ u and v must be non-zero vectors

– All vectors which are equivalent correspond to 
an element of the projective space
(a projective element)

– Projective equivalence is denoted   u ∼ v 4

A projective space
• The projective space generated from V consist 

of all such projective elements

– Any projective element correspond to a 1D subspace 
of V

– Any projective element has a non-unique 
representation of non-zero vectors in V

– Any non-zero element of V corresponds to a unique 
projective element

• The projective space is (here) denoted P(V)
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A projective space

• Dimension of P(V) = dim(V) – 1
• Addition and scalar multiplications are undefined 

operations in P(V), no linear combinations
• No basis exists
• Orthogonality is well-defined!

– Two projective elements are orthogonal iff their 
representative vectors are orthogonal

• A linear mapping M : V  U
produces a well-defined mapping P(V)  P(U)
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Projective representation

• The n-dimensional vector space Rn can be 
given a projective representation by the 
projective space P(Rn+1)

Is represented by the 
projective element 
corresponding to 

The homogeneous
coordinates of y
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Example

All these vectors in R3 represent the 
same projective element
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Homogeneous normalization

• Given an a vector u∈Rn+1 we can scale it 
so that the last element = 1 ⇒
normalization (can we always do this?)

• The first n elements in the normalized 
homogeneous vector are the vector in Rn

that u represents
• This makes it possible to know which 

vector in Rn a specific projective element 
in P(Rn+1) represents
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Projective representation of the 
Euclidean space

• The elements of vectors in R2 and R3 are 
the coordinates of points in 2D or 3D 
Euclidean spaces relative to some specific 
coordinate systems

• We use the projective representation of R2

given by P2 = P(R3)
• We use the projective representation of R3

given by P3 = P(R4)
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Projective representation of the 
Euclidean space

Motivation
• A corresponding representation can be found 

also for lines in 2D and lines + planes in 3D.
• Operations on these geometric object are much 

easier to describe algebraically in a projective 
space than in standard Euclidean coordinates
– Find the point of intersection between a 3D plane and 

a 3D line
• “Exceptional cases” can be included in the same 

representations
– Example: All 2D lines intersect at one point, except if 

the lines are parallel or identical
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A homogeneous representation of 
lines in 2D

• Let y = (y1,y2) be the Euclidean 
coordinates of a 2D point

• Any 2D line is characterized by an angle 
and a scalar L such that

y lies on the line  ⇔ y1 cos  + y2 sin  = L

The defining equation of a line
12

A homogeneous representation of 
lines in 2D

Origin

(L cos , L sin )

L = shortest distance from the line to the origin

a normal vector
which points from
the origin to the line

L and  are well-defined 
also for a vertical line.

Compare to y2=k y1 + a



13

A homogeneous representation of 
lines in 2D

• y lies on the line ⇔ y1 cos  + y2 sin  = L

Homogeneous coordinates of y
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A homogeneous representation of 
lines in 2D

• Suggests a homogeneous representation 
of the line:

• y lies on the line  ⇔ yH · lH = 0
• lH is the (dual) homogeneous coordinates 

of the line
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Dual homogeneous normalization

• Given a non-zero vector in R3 we can 
determine which line it represents by 
scaling it such that
– The norm of elements 1 and 2 equals 1
– Third element is non-positive ( 0)

• The elements of the normalized vector 
directly gives  and L
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The cross product

• The cross product a × b for a, b ∈ R3

a × b is orthogonal to a and b

a × b = 0 if a = b

a × b = - (b × a) ∼ (b × a)
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The cross product operator

• For a fix vector a, the cross product with b
is a linear mapping on b

• The “a ×” mapping can be represented by 
an anti-symmetric 3 × 3 matrix [a]×:

such that a  b = [a]b
18

The intersection of two lines

• Let l1H and l2H be the dual homogeneous 
representation of two lines in 2D

• Wanted: the intersection point x between the 
lines

• Its homogeneous representation yH must satisfy
yH · l1H = yH · l2H = 0

⇒ yH is orthogonal to both l1H and l2H

yH = l1H × l2H
l1

l2

y
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Special case 1

• If the two lines are identical
– y is not unique
– any point on the line is an intersection point

• In this case: l1H × l2H = 0
• We can use the result = 0 to flag that the 

lines are identical, i.e., the result is not a 
specific point

Result = 0  multiple solutions exist

20

Special case 2

• If the two lines are distinct but parallel, y is 
“undefined”, but …

Assuming the lines are distinct

Cannot be normalized 
to represent a 2D point
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Points at infinity

• The result in this case can be used to represent 
a “point at infinity”
– The normalization suggests that the corresponding 

2D point lies at infinite distance from the origin
• This is a single point even though there are two 

directions to look for this point
– An abstraction of an orientation of a line in 2D

• Given “for free” as elements in P2

• The result of an operation which maps onto P2 is 
either a proper 2D point or a point at infinity
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Line intersecting two points

• Let y1H and y2H be the homogeneous 
coordinates of two points in 2D

• We want to find the line which intersects both 
points

• Its dual homogeneous representation lH must 
satisfy
yH1 · lH = yH2 · lH = 0
⇒ lH is orthogonal to yH1 and yH2

lH = yH1 × yH2
y1

y2l
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Special case 1

• If the two points are identical, the line is 
not unique: any line going through one 
point goes through the other

• In this case: yH1× yH2 = 0
• We can (again) use the result = 0 to flag 

that the points are identical, i.e., the result 
is not a specific line but rather a set of 
lines
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Special case 2

• This operation still works also when only 
one of the two points is a point at infinity:
– The resulting line goes through the first point
– In the orientation given by the second point 

(the point at infinity)
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Special case 3

• The operation even works when both 
points are points at infinity:

Assuming the points at inifity are distinct

Cannot be normalized 
to represent a 2D line
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The line at infinity
• The result in this case can be used to represent 

a “line at infinity”
– The normalization suggests that the corresponding 

2D line lies at infinite distance from the origin
• There is only one single line at infinity

– Represents the line which intersects with any distinct 
pair of points at infinity

– An abstraction of a circle at infinite distance from the 
origin

– Given “for free” as an element of P2

– The result of an operation which maps onto P2 can be 
either a proper 2D line or the line at infinity
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Notation

• In the following, most vectors are 
homogeneous representations of points or 
lines
– Drop the H
– Use y to denote homogeneous coordinates of 

a 2D point.  y is then an element of P2

– The corresponding 2D point is also called y !
– Use l to denote dual homogeneous 

coordinates of a 2D line.  l is then an element 
of P2

– The corresponding line is also called l ! 28

Affine coordinate transformations

• A 2D point y is transformed to y’ such that 
the corresponding Euclidean 2D 
coordinates are related as

• This transformation is called affine
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Affine coordinate transformations

• Translation:

y’1y1

y2 y’2
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Affine coordinate transformations

• Rotation:

y1

y2

y’1

y’2


Note: rotation 
around the origin!
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Coordinate transformations

• Scaling

y1

y2

y’1

y’2
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Coordinate transformations

• Mirroring

y1

y2

y’1

y’2
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Affine coordinate transformations

• Skewing

y1

y2

y’1

y’2
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Affine coordinate transformations

• In homogeneous coordinates:

All these transformations are represented as linear
mappings T onto the homogeneous coordinates
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Coordinate transformations
• The composition of two such matrices is again a 

matrix of this type: a matrix group
– Rotation around an arbitrary point can be represented 

as a composition of translation-rotation-translation
• The 3 × 3 transformation matrix is itself an 

element of a projective space
– A multiplication by a non-zero scalar onto the matrix 

can be moved to either of the two homogeneous 
vectors y or y’ which gives equivalent homogeneous 
vectors

• The transformation matrix can be more general 
than described here
– More on this after the 3D case has been described
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2D coordinate transformations

• Let y ∈ P2 homogeneous coordinates of a 
2D point

• Let T be a 3 × 3 matrix which represents 
some coordinate transformation: y’ = T y
– Note that y’ represent the same point as y but

in a different coordinate system!!
• Let l be a line that includes y:  l·y = 0
• If then follows that l transforms to l’=(TT)-1 l
• (TT)-1 is called the dual transformation of T

(why?)
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A homogeneous representation of 
planes in 3D

• Let (x1,x2,x3) be the Euclidean coordinates 
of a 3D point x

• Any 3D plane is characterized by a unit 
vector n=(n1,n2,n3) and a scalar L such 
that

x lies on the plane  ⇔ x1 n1+x2 n2+x3 n3 = L

The defining equation of a plane 38

A homogeneous representation of 
planes in 3D

Origin

(L n1, L n2, L n3)

L = shortest distance from the plane to the origin

a normal vector
which points from
the origin to the plane
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A homogeneous representation of 
planes in 3D

• x lies on the plane ⇔ x1 n1+x2 n2+x3 n3 = L

Homogeneous coordinates of x
40

A homogeneous representation of 
planes in 3D

• Suggests a homogeneous representation 
of the plane:

• x lies on the plane ⇔ x · p = 0
• p are the (dual) homogeneous coordinates 

of the plane
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Dual homogeneous normalization

• Given a vector in R4 we can determine 
which plane it represents by scaling it such 
that
– The norm of elements 1 to 3 equals 1
– Fourth element is non-positive ( 0)

• The elements of the normalized vector 
directly gives n and L

• Similar to the 2D case:
x’ = T x ⇔ p’ = (TT)-1 p
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Points and planes at infinity

Similar to the 2D case:
• In 3D there are points at infinity

– Have last homogeneous coordinate = 0
• There is a single 3D plane at infinity

– Intersects all 3D points at infinity
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Affine transformations in 3D

• Simple extension from the 2D case!!

44

BREAK!
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A homogeneous representation of 
lines in 3D

• 3D lines can be represented in several 
slightly different ways

• Here we will use
– so called Plücker coordinates in the form of 

an anti-symmetric matrix
– Parametric representation:

x = x0 + t n   eller x = t x1 + (1 - t) x2
46

Parametric representation of lines 
in 3D

• Let x1 and x2 be two distinct 3D points with
x1, x2 ∈ P3

• Any point x on the line can be written

x = t x1 + (1 - t) x2 for some t ∈ R

x1

x2

x
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A homogeneous representation of 
lines in 3D

Define L = x1 x2
T – x2 x1

T

• L is a homogenous representation of the 
line which intersects x1 and x2

• L is a 4 × 4 anti-symmetric matrix: LT = - L
• L can be seen as a projective element
• Referred to as Plücker coordinates of the 

line
• As a projective element L is independent 

of which two distinct points on the line are 
used (why?)

(why?)
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• Let L be the Plücker coordinates of a 3D 
line

• Let p the dual homogeneous coordinates 
of a plane

• Which is the intersection point x0?
– Characterized by x0 · p = 0

Intersection between
a line and a plane in 3D

x0 ∼ L p p
x0

L
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Dual Plücker coordinates
• Alternatively, let p1 and p2 be two planes that 

intersect the 3D line
• L’ = p1p2T – p2p1T is the dual Plücker

coordinates of the line
• Independent of which 2 planes we use

(as long as they are distinct and intersect the 
line)

• L’x gives the plane that includes the line and 
point x

• Relation between L and L’ ?
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2D coordinates on a 3D plane

• The Euclidean coordinates of a 3D point in 
a plane can be described as

Some point on
the plane

Tangent vectors of the plane

All three vectors define a 2D coordinate system in the plane
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2D coordinates on a 3D plane

o

a

b

Origin of the 3D space
52

• In homogeneous coordinates:

or x = P y

2D coordinates on a 3D plane
Homogeneous 2D 
coordinates: y

Mapping from 2D to 
3D homogeneous 
coordinates: P

P uniquely defines the 2D 
coordinate system on the plane
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• Given
– two 3D planes, each with its own 2D coordinate 

system, P1 and P2

– a 3D point n
there is a unique mapping from one plane to the
other:

Project a point x1 on the first plane through n
onto the second plane which gives x2

2D to 2D projective mappings
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2D to 2D projective mappings

n

x1

x2

a1

a2

b1

b2

o1

o2

In this example: n is located in between the planes
This is not required!
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2D to 2D projective mappings

• The geometric relation between x1, x2, and 
n together with x1 = P1 y1 and x2 = P2 y2
leads to (why?)

y2 = H y1

• H is a  3 × 3 general non-singular matrix

• Depends on the two planes and on n
56

Homography

• This mapping on the 2D coordinates in the 
two planes is more general than the affine 
transformations described earlier!

• Called homography or projective 
transformation

• Any 3  3 non-singular H is a homography
• Describes e.g. how a pinhole-camera 

maps points on a plane to the image plane
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Homography

• Includes the affine transformations!
– In the special case that the planes are parallel
– In other cases: there are points at infinity that 

are mapped to normal points and vice versa 
• We assume that n is not included in any of 

the two planes ⇒ H is always invertible
– We can uniquely go from image coordinates 

to coordinates in the plane
• H always maps a line to a line (why?)
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Homographies

• Any homography is determined by how it 
maps 4 distinct points

y1

y2

y1

y2
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Homographies

• One or two of the 4 points may be at 
infinity

y1

y2

y1

y2
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3D homography transformations

• The group of 4  4 non-singular matrices 
define the group of 3D homography 
transformations

• Analogue to the 2D case, but cannot be 
characterized in terms of projective 
mappings in a simple way
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The pinhole camera model

P=(x1,x2,x3) is
a point in 3D
space

The image plane and the camera 
center define a camera-centered
coordinate system (x1,x2,x3):

x1,x2 are parallel to the image 
plane, x3 is perpendicular to the 
plane and defines the viewing
direction of the camera

f = focal length, the 
distance between  the 
image plane and the 
camera center

Principal or optical axis

Q=(y1,y2) is 
the projection 
of P
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The pinhole camera model

• If we look at the camera coordinate system 
along the x2 axis:

Two similar
triangles give:
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The pinhole camera model

• Looking along the x1 axis gives a similar 
expression for y2

• This can be summarized as:
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The virtual image plane

• The projected image is rotated 180o 

relative to how we “see” the 3D world
– Reflection in both y1 and y2 coordinates = 

rotation
• Must be de-rotated before we can view it
• Mathematically this is equivalent to placing 

the image plane in front of the focal point
• Called a virtual image plane
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The pinhole-camera

• We now have:

• In homogeneous image coordinates

The mapping of 3D 
coordinates to 2D image 
coordinates defined by 
the pinhole-camera in 
camera centered 
coordinates
(virtual image plane!)
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The pinhole-camera

• Using also homogeneous 3D coordinates:

Defines a 3 × 4 
matrix C C is the camera

(projection) matrix
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The normalized camera

• In the case of a normalized camera: f = 1

Notation for the normalized 
camera matrix
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The camera center

• In the camera centered coordinate system, 
the camera center (focal point) has 3D 
coordinates (0,0,0)

• The camera matrix maps this point to:

• The homogeneous representation of the 
camera center lies in the null space of the 
camera matrix
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The general camera matrix

• The camera matrix defined so far assumes 
that both 2D and 3D coordinates are given 
in a camera centered coordinate system

• We want to be able to use
– 3D coordinates in any coordinate system of 

our choice, world coordinates
– 2D image coordinates in a pixel based 

coordinate system, often with the origin at the 
top left corner and first coordinate down
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The general camera matrix

• Assuming that the world coordinate 
system we use is Euclidean, there is 
always a rotation and translation of the 3D 
coordinate system that align it with the 
camera centered system

Camera centered
3D coordinates

Rotation 
transformation

3D world
coordinates

World origin in 
camera centered 
coordinates
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The general camera matrix

• In homogeneous coordinates:

Defines the transformation
matrix Te

Camera centered 
3D coordinates

World coordinates
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The general camera matrix

• The normalized image coordinates are 
then given as

y0 = C0 x’ = C0 Te x

C0 Te = ( R | d )



73

Image coordinates

• Normalized image coordinates
– f = 1
– Origin at the image center
– First coordinate right, second up
– Same length unit as in 3D space

• Standard image coordinates
– Arbitrary f > 0
– Origin at the image top left
– First coordinate down, second right
– Pixel based length unit

y1

y2

y1

y2

or vice versa 74

Image coordinates

• To transform from y0 to standard image 
coordinates y

(c1,c2) = coordinates of 
the image center in the 
standard coodinates

• f = focal length

• r = pixel resolution
[pixel / length unit]

Defines the transformation 
matrix Ti
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The general camera matrix

• We can now summarize all this as

y = Ti y0 = Ti C0 Te x = C x

• The general camera matrix C is given by

C = Ti C0 Te

Internal (intrinsic)
camera parameters

External (extrinsic)
camera parameters

The normalized
camera matrix 76

The general camera matrix
• Te depends on where the camera (camera 

center!) is positioned in 3D space and how it is 
oriented. May be variable or fixed depending on 
application

• Ti depends on the type of camera, and its 
setting such as zoom, resolution, etc.  Typically 
fixed.

• Since C is the product of three matrices of
rank 3, 3, and 4  C has rank 3

• To determine C is referred to as
camera calibration (separate lecture)
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Equivalent cameras

• Let C1 and C2 be the camera matrices of two 
pinhole cameras with the same camera center n

y1 = C1 x C1 n = 0
y2 = C2 x C2 n = 0

• In this case: there is a homography mapping H 
from y1 to y2 defined by C1 and C2 such that

y1 = H y2 y2 = H-1 y1

• The images in the two cameras are identical 
except for a geometric transformation
– In practice the images crop different parts!

(why?)
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Affine camera

• In certain applications the 3D points have
a distance d to the camera that does not 
vary much relative to the distance

• In homogeneous coordinates: The affine camera
matrix: it always
has bottom row

(0 0 0 d)
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The orthographic camera

• An identical case appears when the 3D 
points are at a large distance from the 
camera

• Referred to as an orthographic camera

• Note: the affine/orthographic property is 
derived from propoerties of the 3D points, 
not of the camera
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Conics (in 2D)

• (y1, y2) lies on a conic curve centered on 
the origin if

y1 y2 A
y1
y2

= 1

A is 2  2 symmetric
and determines the
character of the curve
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Conics (in 2D)

• In homogeneous coordinates the defining 
equation becomes

• Generalizes to conics at arbitrary positions 
by appropriate translations

yT
µ
A 0
0T −1

¶
y = yTQ y = 0

Q is 3  3 symmetric
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y

Conics (in 2D)

Assuming that y lies on the conic
• We can interpret Q y as a line that must 

pass through y (why?)
• This line is in fact the tangent lt of the 

conic at point y

lt
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Dual conics

• yTQ y = 0 defines the points y that lie on a 
conic

• Follows: lT Q-1 l = 0 defines the lines that 
are tangent to the same conic (why?)

• Q-1 is the dual conic relative to Q
• Q-1l gives the tangent point of tanget line l


