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Multi-body factorization methods
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Motion segmentation

• A common problem in computer vision is 
to segment video images into distinct 
objects based on their motion
– Segmenting people or vehicles in surveillance 

video
– Segmenting moving objects for video 

compression
– …
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Two main approaches

• A dense motion field (optic flow) is estimated and 
segmented, based on
– Motion boundaries
– Homogeneous motion models within segments

• A sparse point set (e.g. Harris) are tracked and 
segmented into consistently moving objects

Motion segmentation
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Motion segmentation of sparse 
point sets

Two approaches covered in this course:
• Multi-body factorization

– Assumes an affine or orthographic camera (data)
• 6 point geometry

– Allow general perspective cameras
For both approaches
• Point correspondence over time is important

– Strict temporal ordering of data not necessary
• Wide base-line over the sequence is OK

– Not OK for optic flow approaches
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The 3D to 2D mapping

In normalized image coordinates

Homogeneous 3D 
coordinates in 
some suitable 
coordinate system

Rotation and translation 
of the camera relative to 
the 3D system 6

The affine camera

For a normalized affine camera:
First & second rows of R First & second elements of t

The constant “denominator”
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The affine camera

Can be rewritten as

! 8

The affine camera

The normalized image coordinates become:
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Single-body factorization

• Tomasi & Kanade, Shape from motion 
from image streams under orthography:
A factorization method, IJCV 1992
(report 1990)
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Multiple points and multiple 
observations

• We observe N 3D points at F time points
• We assume that their 3D coordinates are 

fixed but the camera is moving

Affine camera matrix at
time f = 1, …, F

Homogeneous
3D coordinates

for point i = 1, …, N
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The data matrix W

• We can represent the elements ufi and vfi
as two matrices

• Stack them one on top of the other

W M

S
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Problem formulation

• Given that we observe normalized image 
coordinates (ufi,vfi) (matrix W)

• what can be said about
– The camera motion (matrix M)
– The 3D points (matrix S)

• We know that W = M S
• We want to factorize W into M and S
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General observations

We notice that
• W is a (2F)  N matrix
• M is a (2F)  4 matrix, max rank 4
• S is a 4  N matrix, max rank 4
• W = M S , W has max rank 4

• These statements are not true for a 
general perspective camera!

14

General observations

• The columns of W are vectors in R2F

• All these vectors are spanned by the 4 columns 
of M

• All columns of W lie in a 4-dim subspace of R2F

that is determined by M, i.e., by the camera 
motion

• All these statements are independent of the 
ordering of indices (f,i)
– Independent of permutations of rows/columns in W
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Single-body factorization

• The Costeira & Kanade article shows how 
the formulated problem can be solved

1. Make an SVD of W = U  VT

  should be 4  4 diagonal
2. Set: M = U A &  S = A-1VT

Gives: M S = W, but A still undetermined
3. Determine A by additional constraints
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Single-body factorization
Summary
• The data matrix W is of (max) rank 4
• We can factorize it as W = M S

– Algorithm is in the article
• M represents the camera motion
• S represents the 3D points
• Basic assumption: affine camera

• When is W of rank < 4?



17

Two-body factorization

• Let us consider the case that we have two 
objects that are moving
– rigidly (rotation & translation only)
– Independently

• Straight-forward to generalize to multiple 
object 

• Let us assume that we have ordered the 
points such that the N1 first points are on 
object 1 and the N2 last points are on 
object 2 (a.k.a. canonical ordering)
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Two-body factorization

• The full data matrix W* is then

W* = ( W1 | W2)

• W1 is the (2F)  N1 data matrix for points 
on object 1

• W2 is the (2F)  N2 data matrix for points 
on object 2
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Two-body factorization

From single-body factorization:

W1 = M1 S1

W2 = M2 S2

where we assume M1  M2

Mk and Sk have
max rank 4 for

k = 1, 2
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Two-body factorization

From single-body factorization:
• All columns in W1 lie in a 4-dim subspace 

determined by M1

• All columns in W2 lie in a 4-dim subspace 
determined by M2

The intersection
between the

spaces may or
may not be empty

(when, why?)
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Two-body factorization

We get

 W* is of (max) rank 8

W? = M1|M2
S1 0
0 S2

Rank 8
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Two-body factorization

From

follows

MkSk = UkΣkV
T
k k = 1, 2

W? =
¡
U1|U2

¢µΣT1 0
0 ΣT2

¶µ
VT
1 0
0 VT

2

¶
W? = U? Σ? V?T

SVD

Not SVD !
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Two-body factorization

is not an SVD of W* since U* is not 
orthogonal

• However, from svd(U**) = U  RT, we get

W? = U?Σ?V?T

W? = UΣRTV?T SVD !
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The real problem

• In reality, we do not know which points 
belong to which object

• W is the data matrix for the real problem
• There exists (at least one) permutation P

that brings the points to the canonical 
order described earlier

W* = WP       W = W*PT
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The real problem

Putting things together gives

W = W*PT = U  RTV*TPT

This is an SVD of W (why?)

W = U  VT
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The real problem

We summarize
• W is the 2F × (N1+N2) data matrix (known)
• W is of (max) rank 8

• We want to find a permutation P of the 
points that brings them to canonical order 
⇒ segmentation

• W* = W P
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Problem formulation

• If we can do this we can solve M1, M2 and 
S1, S2 from W* (how?)

• In many applications this last step is not 
required, the segmentation is sufficient!

• Problem formulation:
– How do we find P such that W* = W P is 

canonical form?
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How to solve it

• [Boult & Brown, Factorization-based
segmentation of motions, WVM, 1991]

• We can compute svd(W) = U  VT

• We known that VT = RTV*TPT

• Form Q = VVT = P V*V*TPT = PQ*PT
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How to solve it

• Main result:

Q* is N1+N2 block 
diagonal!

Q20

0Q1

Q* =

N1

N2

N1 N2
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Principal solution

1. Form W from image data
2. Compute svd(W) = U  VT

3. Form Q = V VT

4. Find P such that PTQ P = Q* is N1+N2
block diagonal (with N1, N2 unknown!)

Step 4. is the main issue!
For free we also get N1 and N2!
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Multi-body factorization
• From the 2-body case it is straight-forward to generalize 

to the M-body case
• W is (2F) × (N1 + N2 +…+ NM)
• W has (max) rank 4M
• The columns of W lie in either of M specific

4-dim subspaces, one subspace per object
• We still want to find a permutation P that brings W to a 

canonical column order
• Main problems

– We may not know M, the number of objects
– Noise  Q* is not exactly block diagonal

• There are degeneracies! (which, how?)
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Specific solutions
• Boult & Brown suggest a simple but unrobust

method in their first paper (1991)
• Costeira & Kanade suggest an alternative 

method in the article (still unrobust) (1998)
• …
• Tron & Vidal: The Hopkins 155 data set (2007)

– http://www.vision.jhu.edu/data/hopkins155/
– Includes an overview of methods to that date

• Elhamifar & Vidal: Spectral clustering (2009)
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Uncalibrated factorization

• In most practical application we have a 
uncalibrated camera

Standard image coordinates

Normalized image coordinates 34

The affine camera revisited

• Plug in the expression for (u,v,1)
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The affine camera revisited

• The image coordinates become

• Consequently, we can still construct the data 
matrix W and do factorization based 
segmentation 

• However, we cannot compute the camera 
motion Mk or the 3D coordinates Sk from W


