Geometry in Computer Vision

Spring 2010 Lecture 4.2 Multi-body factorization methods

Motion segmentation

- A common problem in computer vision is to segment video images into distinct objects based on their motion
 - Segmenting people or vehicles in surveillance video
 - Segmenting moving objects for video compression

Motion segmentation

Two main approaches

- A *dense motion field* (optic flow) is estimated and segmented, based on
 - Motion boundaries
 - Homogeneous motion models within segments
- A sparse point set (e.g. Harris) are tracked and segmented into consistently moving objects

Motion segmentation of sparse point sets

Two approaches covered in this course:

- Multi-body factorization
 - Assumes an affine or orthographic camera (data)
- 6 point geometry

. . .

- Allow general perspective cameras
- For both approaches
- Point correspondence over time is important
 - Strict temporal ordering of data not necessary
- Wide base-line over the sequence is OK
 Not OK for optic flow approaches

The 3D to 2D mapping

In *normalized* image coordinates

The affine camera

Single-body factorization

• Tomasi & Kanade, Shape from motion from image streams under orthography: A factorization method, IJCV 1992 (report 1990)

Multiple points and multiple observations

- We observe *N* 3D points at *F* time points
- We assume that their 3D coordinates are fixed but the camera is moving

The data matrix **W**

9

11

- We can represent the elements u_{fi} and v_{fi} as two matrices
- Stack them one on top of the other

$$\begin{pmatrix} u_{11} & \dots & u_{1N} \\ \vdots & & \vdots \\ u_{F1} & \dots & u_{FN} \\ v_{11} & \dots & v_{1N} \\ \vdots & & \vdots \\ v_{F1} & \dots & v_{FN} \end{pmatrix} = \begin{pmatrix} r_{11} & t_{11} \\ \vdots & \vdots \\ r_{1F} & t_{1F} \\ r_{21} & t_{21} \\ \vdots & \vdots \\ r_{2F} & t_{2F} \end{pmatrix} (\mathbf{s}_{i} \dots \mathbf{s}_{i})$$

$$\mathbb{W}$$

Problem formulation

- Given that we observe normalized image coordinates (u_{fi}, v_{fi}) (matrix **W**)
- what can be said about
 - The camera motion (matrix **M**)
 - The 3D points (matrix S)
- We know that **W** = **M** S
- We want to factorize **W** into **M** and **S**

General observations

We notice that

- W is a $(2F) \times N$ matrix
- **M** is a $(2F) \times 4$ matrix, max rank 4
- **S** is a $4 \times N$ matrix, max rank 4
- $W = M S \Rightarrow$, W has max rank 4
- These statements are not true for a general perspective camera!

General observations

- The columns of **W** are vectors in R^{2F}
- All these vectors are spanned by the 4 columns of ${\bf M}$
- All columns of W lie in a 4-dim subspace of R^{2F} that is determined by M, i.e., by the camera motion
- All these statements are independent of the ordering of indices (*f*,*i*)

- Independent of permutations of rows/columns in W

Single-body factorization

- The Costeira & Kanade article shows how the formulated problem can be solved
 - 1. Make an SVD of $\mathbf{W} = \mathbf{U} \Sigma \mathbf{V}^{\mathsf{T}}$ Σ should be 4 × 4 diagonal
 - 2. Set: $\mathbf{M} = \mathbf{U} \Sigma^{1/2} \mathbf{A} \otimes \mathbf{S} = \mathbf{A}^{-1} \Sigma^{1/2} \mathbf{V}^{\mathsf{T}}$ Gives: $\mathbf{M} \otimes \mathbf{S} = \mathbf{W}$, but \mathbf{A} still undetermined
 - 3. Determine A by additional constraints

Single-body factorization

Summary

- The data matrix W is of (max) rank 4
- We can factorize it as W = M S
 Algorithm is in the article
- M represents the camera motion
- S represents the 3D points
- Basic assumption: affine camera
- When is W of rank < 4?

13

Two-body factorization

- Let us consider the case that we have two objects that are moving
 - rigidly (rotation & translation only)
 - Independently
- Straight-forward to generalize to multiple object
- Let us assume that we have ordered the points such that the N₁ first points are on object 1 and the N₂ last points are on object 2 (a.k.a. *canonical ordering*)

Two-body factorization

- The full data matrix $\boldsymbol{W}^{\!\scriptscriptstyle \star}$ is then

 $\mathbf{W}^* = (\mathbf{W}_1 \mid \mathbf{W}_2)$

- W₁ is the (2F) × N₁ data matrix for points on object 1
- W₂ is the (2F) × N₂ data matrix for points on object 2

Two-body factorization

From single-body factorization:

$$\mathbf{W}_1 = \mathbf{M}_1 \; \mathbf{S}_1$$

 \mathbf{M}_{k} and \mathbf{S}_{k} have max rank 4 for k = 1, 2

$$\mathbf{W}_2 = \mathbf{M}_2 \ \mathbf{S}_2$$

where we assume $\mathbf{M}_1 \neq \mathbf{M}_2$

Two-body factorization

From single-body factorization:

- All columns in \boldsymbol{W}_1 lie in a 4-dim subspace determined by \boldsymbol{M}_1
- All columns in W₂ lie in a 4-dim subspace determined by M₂

17

How to solve it

• Main result:

Principal solution

- 1. Form W from image data
- 2. Compute $svd(W) = U \Sigma V^T$
- 3. Form $\mathbf{Q} = \mathbf{V} \mathbf{V}^{\mathsf{T}}$
- 4. Find **P** such that $\mathbf{P}^{\mathsf{T}}\mathbf{Q} \mathbf{P} = \mathbf{Q}^*$ is $N_1 + N_2$ block diagonal (with N_1 , N_2 unknown!)

Step 4. is the main issue! For free we also get N_1 and N_2 !

30

Multi-body factorization

- From the 2-body case it is straight-forward to generalize to the *M*-body case
- **W** is $(2F) \times (N_1 + N_2 + ... + N_M)$
- W has (max) rank 4M
- The columns of **W** lie in either of *M* specific 4-dim subspaces, one subspace per object
- We still want to find a permutation **P** that brings **W** to a canonical column order
- Main problems
 - We may not know M, the number of objects
 - Noise $\Rightarrow \boldsymbol{\mathsf{Q}}^*$ is not exactly block diagonal
- There are degeneracies! (which, how?)

Specific solutions

- Boult & Brown suggest a simple but unrobust method in their first paper (1991)
- Costeira & Kanade suggest an alternative method in the article (still unrobust) (1998)
- ...
- Tron & Vidal: The Hopkins 155 data set (2007)
 - http://www.vision.jhu.edu/data/hopkins155/
 - Includes an overview of methods to that date
- Elhamifar & Vidal: Spectral clustering (2009)

Uncalibrated factorization

 In most practical application we have a uncalibrated camera

The affine camera revisited

• Plug in the expression for (u,v,1)

The affine camera revisited

• The image coordinates become

$$\begin{pmatrix} u' \\ v' \end{pmatrix} = \begin{pmatrix} k_{11}\mathbf{r}_1 + k_{12}\mathbf{r}_2 & k_{11}t_1 + k_{12}t_2 + k_{13} \\ k_{22}\mathbf{r}_2 & k_{22}t_2 + k_{23} \end{pmatrix} \mathbf{s}$$

- Consequently, we can still construct the data matrix W and do factorization based segmentation
- However, we cannot compute the camera motion M_k or the 3D coordinates S_k from W