Geometry in Computer Vision

Spring 2010
Lecture 4.2
Multi-body factorization methods

Motion segmentation

- A common problem in computer vision is to segment video images into distinct objects based on their motion
- Segmenting people or vehicles in surveillance video
- Segmenting moving objects for video compression
- ...

Motion segmentation of sparse point sets

Two approaches covered in this course:

- Multi-body factorization
- Assumes an affine or orthographic camera (data)
- 6 point geometry
- Allow general perspective cameras

For both approaches

- Point correspondence over time is important
- Strict temporal ordering of data not necessary
- Wide base-line over the sequence is OK
- Not OK for optic flow approaches

The 3D to 2D mapping

In normalized image coordinates

$$
\begin{aligned}
& \widehat{\mathbf{y}}=\left(\begin{array}{c}
u \\
v \\
1
\end{array}\right) \sim(\mathbf{R} \mid \mathbf{t})\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
1
\end{array}\right) \quad \begin{array}{l}
\text { Homogeneous 3D } \\
\text { coordinates in } \\
\text { some suitable } \\
\text { coordinate system }
\end{array} \\
& \begin{array}{l}
\text { Rotation and translation } \\
\text { of the camera relative to } \\
\text { the 3D system }
\end{array} \\
& \hline
\end{aligned}
$$

The affine camera

For a normalized affine camera:

The affine camera
Can be rewritten as

$$
\begin{gathered}
\widehat{\mathrm{y}}=\left(\begin{array}{c}
u \\
v \\
1
\end{array}\right) \sim\left(\begin{array}{cc}
\mathrm{r}_{1} & t_{1} \\
\mathrm{r}_{2} & t_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
d
\end{array}\right) \\
\hat{\mathbf{y}}=\left(\begin{array}{c}
u \\
v \\
1
\end{array}\right)=\underset{!}{=}\left(\begin{array}{cc}
r_{1} & t_{1} \\
r_{2} & t_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} / d \\
x_{2} / d \\
x_{3} / d \\
1
\end{array}\right)
\end{gathered}
$$

The affine camera
The normalized image coordinates become:

$$
\begin{aligned}
& \binom{u}{v}=\left(\begin{array}{ll}
r_{1} & t_{1} \\
r_{2} & t_{2}
\end{array}\right)\left(\begin{array}{c}
x_{1} / d \\
x_{2} / d \\
x_{3} / d \\
1
\end{array}\right) \\
& \binom{u}{v}=\left(\begin{array}{ll}
\mathbf{r}_{1} & t_{1} \\
r_{2} & t_{2}
\end{array}\right) \mathbf{s}
\end{aligned}
$$

Single-body factorization

- Tomasi \& Kanade, Shape from motion from image streams under orthography: A factorization method, IJCV 1992 (report 1990)

Multiple points and multiple observations

- We observe N 3D points at F time points
- We assume that their 3D coordinates are fixed but the camera is moving

$$
\binom{\boldsymbol{u}_{\boldsymbol{f} i}}{\boldsymbol{v}_{\boldsymbol{f} i}}=\left(\begin{array}{cc}
\mathbf{r}_{\mathbf{1} f} & \boldsymbol{t}_{\mathbf{1} \boldsymbol{f}} \\
\mathbf{r}_{\mathbf{2 f}} & \boldsymbol{t}_{\mathbf{2 f}}
\end{array}\right) \mathbf{s}_{\boldsymbol{i}} \quad \begin{gathered}
\begin{array}{c}
\text { Homogeneous } \\
\text { 3D coordinates } \\
\text { for point } i=1, \ldots, N
\end{array}
\end{gathered}
$$

Affine camera matrix at time $f=1, \ldots, F$

The data matrix \mathbf{W}

- We can represent the elements $u_{f i}$ and $v_{f i}$ as two matrices
- Stack them one on top of the other

$$
\left(\begin{array}{ccc}
u_{11} & \cdots & u_{1 N} \\
\vdots & & \vdots \\
u_{F 1} & \cdots & u_{F N} \\
v_{11} & \cdots & v_{1 N} \\
\vdots & & \vdots \\
v_{F 1} & \cdots & v_{F N}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{r}_{11} & t_{11} \\
\vdots & \vdots \\
r_{1 F} & t_{1 F} \\
r_{21} & t_{21} \\
\vdots & \vdots \\
r_{2 F} & t_{2 F}
\end{array}\right)\left(s_{i} \ldots s_{i}\right)
$$

Problem formulation

- Given that we observe normalized image coordinates $\left(u_{f i}, v_{f i}\right)$ (matrix W)
- what can be said about
- The camera motion (matrix M)
- The 3D points (matrix S)
- We know that $\mathbf{W}=\mathbf{M} \mathbf{S}$
- We want to factorize \mathbf{W} into \mathbf{M} and \mathbf{S}

General observations

We notice that

- \mathbf{W} is a $(2 F) \times N$ matrix
- \mathbf{M} is a $(2 F) \times 4$ matrix, max rank 4
- S is a $4 \times N$ matrix, max rank 4
- W = M S \Rightarrow, W has max rank 4
- These statements are not true for a general perspective camera!

General observations

- The columns of \mathbf{W} are vectors in $R^{2 F}$
- All these vectors are spanned by the 4 columns of M
- All columns of \mathbf{W} lie in a 4 -dim subspace of $R^{2 F}$ that is determined by \mathbf{M}, i.e., by the camera motion
- All these statements are independent of the ordering of indices (f, i)
- Independent of permutations of rows/columns in \mathbf{W}

Single-body factorization

- The Costeira \& Kanade article shows how the formulated problem can be solved

1. Make an SVD of $\mathbf{W}=\mathbf{U} \Sigma \mathbf{V}^{\top}$
Σ should be 4×4 diagonal
2. Set: $\mathbf{M}=\mathbf{U} \boldsymbol{\Sigma}^{1 / 2} \mathbf{A}$ \& $\mathbf{S}=\mathbf{A}^{-1} \boldsymbol{\Sigma}^{1 / 2} \mathbf{V}^{\top}$

Gives: M S = W, but A still undetermined
3. Determine \mathbf{A} by additional constraints

Single-body factorization

Summary

- The data matrix \mathbf{W} is of (max) rank 4
- We can factorize it as $\mathbf{W}=\mathbf{M} \mathbf{S}$
- Algorithm is in the article
- M represents the camera motion
- S represents the 3D points
- Basic assumption: affine camera
- When is W of rank < 4?

Two-body factorization

- Let us consider the case that we have two objects that are moving
- rigidly (rotation \& translation only)
- Independently
- Straight-forward to generalize to multiple object
- Let us assume that we have ordered the points such that the N_{1} first points are on object 1 and the N_{2} last points are on object 2 (a.k.a. canonical ordering)

Two-body factorization

- The full data matrix \mathbf{W}^{*} is then

$$
\mathbf{W}^{*}=\left(\mathbf{W}_{1} \mid \mathbf{W}_{2}\right)
$$

- \mathbf{W}_{1} is the $(2 F) \times N_{1}$ data matrix for points on object 1
- \mathbf{W}_{2} is the $(2 F) \times N_{2}$ data matrix for points on object 2

Two-body factorization

From single-body factorization:

$$
\begin{aligned}
& \mathbf{W}_{1}=\mathbf{M}_{1} \mathbf{S}_{1} \\
& \mathbf{W}_{2}=\mathbf{M}_{2} \mathbf{S}_{2}
\end{aligned}
$$

\mathbf{M}_{k} and \mathbf{S}_{k} have max rank 4 for $k=1,2$
where we assume $\mathbf{M}_{1} \neq \mathbf{M}_{2}$

Two-body factorization

From single-body factorization:

- All columns in \mathbf{W}_{1} lie in a 4-dim subspace determined by \mathbf{M}_{1}
- All columns in \mathbf{W}_{2} lie in a 4-dim subspace determined by \mathbf{M}_{2}

Two-body factorization
We get
Rank 8
$\mathbf{W}^{\star}=\left(\mathbf{M}_{1} \mid \mathbf{M}_{2}\right)\left(\begin{array}{cc}\mathbf{S}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_{2}\end{array}\right)$
$\Rightarrow \mathbf{W}^{*}$ is of (max) rank 8

Two-body factorization

$$
\mathbf{W}^{\star}=\mathbf{U}^{\star} \boldsymbol{\Sigma}^{\star} \mathbf{V}^{\star T}
$$

is not an SVD of \mathbf{W}^{*} since \mathbf{U}^{*} is not orthogonal

- However, from $\operatorname{svd}\left(\mathbf{U}^{*} \Sigma^{*}\right)=\mathbf{U} \Sigma \mathbf{R}^{\top}$, we get

$$
\mathbf{W}^{\star}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{R}^{T} \mathbf{V}^{\star T} \quad \text { SVD }!
$$

Two-body factorization

> From $$
\mathbf{M}_{k} \mathbf{S}_{k}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T} \quad k=1,2
$$

follows

$$
\begin{aligned}
& \mathbf{W}^{\star}=\left(\mathbf{U}_{1} \mid \mathbf{U}_{2}\right)\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{1}^{T} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{2}^{T}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{V}_{1}^{T} & \mathbf{0} \\
\mathbf{0} & \mathbf{V}_{2}^{T}
\end{array}\right) \\
& \mathbf{W}^{\star}=\mathbf{U}^{\star} \quad \boldsymbol{\Sigma}^{\star} \quad \mathbf{V}^{\star T} \\
& \text { Not SVD! }
\end{aligned}
$$

The real problem

- In reality, we do not know which points belong to which object
- W is the data matrix for the real problem
- There exists (at least one) permutation \mathbf{P} that brings the points to the canonical order described earlier
$\mathbf{W}^{*}=\mathbf{W} \mathbf{P} \quad \mathbf{W}=\mathbf{W}^{*} \mathbf{P}^{\top}$

The real problem

Putting things together gives
$\begin{aligned} & \mathbf{W}=\mathbf{W}^{*} \mathbf{P}^{\top}=\mathbf{U} \Sigma \mathbf{R}^{\top} \mathbf{V}^{\star} \mathbf{P}^{\top} \\ & \text { This is an SVD of } \mathbf{W} \text { (why?) } \\ & \mathbf{W}=\mathbf{U} \Sigma \overline{\mathbf{V}^{\top}}\end{aligned}$.

$$
\mathbf{W}=\mathbf{W}^{\star} \mathbf{P}^{\top}=\mathbf{U} \Sigma \mathbf{R}^{\top} \mathbf{V}^{\star \top} \mathbf{P}^{\top}
$$

$$
\mathbf{W}=\mathbf{U} \Sigma \mathbf{V}^{\top}
$$

Problem formulation

- If we can do this we can solve $\mathbf{M}_{1}, \mathbf{M}_{2}$ and $\mathbf{S}_{1}, \mathbf{S}_{2}$ from \mathbf{W}^{*} (how?)
- In many applications this last step is not required, the segmentation is sufficient!
- Problem formulation:
- How do we find \mathbf{P} such that $\mathbf{W}^{*}=\mathbf{W} \mathbf{P}$ is canonical form?

The real problem

We summarize

- \mathbf{W} is the $2 F \times\left(N_{1}+N_{2}\right)$ data matrix (known)
- \mathbf{W} is of (max) rank 8
- We want to find a permutation \mathbf{P} of the points that brings them to canonical order \Rightarrow segmentation
- $\mathbf{W}^{*}=\mathbf{W} \mathbf{P}$

How to solve it

- [Boult \& Brown, Factorization-based segmentation of motions, WVM, 1991]
- We can compute $\operatorname{svd}(\mathbf{W})=\mathbf{U} \Sigma \mathbf{V}^{\top}$
- We known that $\mathbf{V}^{\boldsymbol{\top}}=\mathbf{R}^{\boldsymbol{\top}} \mathbf{V}^{\star} \mathbf{P}^{\boldsymbol{\top}}$
- Form $\mathbf{Q}=\mathbf{V} \mathbf{V}^{\top}=\mathbf{P} \mathbf{V}^{*} \mathbf{V}^{* \top} \mathbf{P}^{\top}=\mathbf{P} \mathbf{Q}^{*} \mathbf{P}^{\top}$

How to solve it

Principal solution

- Main result:
\mathbf{Q}^{*} is $N_{1}+N_{2}$ block diagonal!

1. Form \mathbf{W} from image data
2. Compute $\operatorname{svd}(\mathbf{W})=\mathbf{U} \Sigma \mathbf{V}^{\top}$
3. Form $\mathbf{Q}=\mathbf{V} \mathbf{V}^{\top}$
4. Find \mathbf{P} such that $\mathbf{P}^{\top} \mathbf{Q} \mathbf{P}=\mathbf{Q}^{*}$ is $N_{1}+N_{2}$ block diagonal (with N_{1}, N_{2} unknown!)

Step 4. is the main issue!
For free we also get N_{1} and N_{2} !

Multi-body factorization

- From the 2-body case it is straight-forward to generalize to the M-body case
- \mathbf{W} is $(2 F) \times\left(N_{1}+N_{2}+\ldots+N_{M}\right)$
- W has (max) rank $4 M$
- The columns of \mathbf{W} lie in either of M specific 4-dim subspaces, one subspace per object
- We still want to find a permutation \mathbf{P} that brings \mathbf{W} to a canonical column order
- Main problems
- We may not know M, the number of objects
- Noise $\Rightarrow \mathbf{Q}^{*}$ is not exactly block diagonal
- There are degeneracies! (which, how?)

Specific solutions

- Boult \& Brown suggest a simple but unrobust method in their first paper (1991)
- Costeira \& Kanade suggest an alternative method in the article (still unrobust) (1998)
- ...
- Tron \& Vidal: The Hopkins 155 data set (2007)
- http://www.vision.jhu.edu/data/hopkins155/
- Includes an overview of methods to that date
- Elhamifar \& Vidal: Spectral clustering (2009)

Uncalibrated factorization

- In most practical application we have a uncalibrated camera

Normalized image coordinates

The affine camera revisited

- Plug in the expression for (u,v,1)

$$
\mathbf{y}=\left(\begin{array}{l}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
k_{11} & k_{12} & k_{13} \\
0 & k_{22} & k_{23} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cc}
\mathbf{r}_{1} & t_{1} \\
\mathbf{r}_{2} & t_{2} \\
0 & 1
\end{array}\right) \mathbf{s}
$$

$\mathbf{y}=\left(\begin{array}{c}u^{\prime} \\ v^{\prime} \\ 1\end{array}\right)=\left(\begin{array}{cc}k_{11} \mathrm{r}_{1}+k_{12} \mathrm{r}_{2} & k_{11} t_{1}+k_{12} t_{2}+k_{13} \\ k_{22} \mathbf{r}_{2} & k_{22} t_{2}+k_{23} \\ 0 & 1\end{array}\right)\left(\begin{array}{c}x_{1} / d \\ x_{2} / d \\ x_{3} / d \\ 1\end{array}\right)$

The affine camera revisited

- The image coordinates become

$$
\binom{u^{\prime}}{v^{\prime}}=\left(\begin{array}{cc}
k_{11} \mathrm{r}_{1}+k_{12} \mathbf{r}_{2} & k_{11} t_{1}+k_{12} t_{2}+k_{13} \\
k_{22} \mathbf{r}_{2} & k_{22} t_{2}+k_{23}
\end{array}\right) \mathbf{s}
$$

- Consequently, we can still construct the data matrix \mathbf{W} and do factorization based segmentation
- However, we cannot compute the camera motion \mathbf{M}_{k} or the 3D coordinates \mathbf{S}_{k} from \mathbf{W}

