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Multi-body factorization methods

Motion segmentation

« A common problem in computer vision is
to segment video images into distinct
objects based on their motion

— Segmenting people or vehicles in surveillance
video

— Segmenting moving objects for video
compression

Motion segmentation

Two main approaches

» A dense motion field (optic flow) is estimated and
segmented, based on
— Motion boundaries
— Homogeneous motion models within segments

Motion segmentation of sparse
point sets

Two approaches covered in this course:

» Multi-body factorization
— Assumes an affine or orthographic camera (data)

» A sparse point set (e.g. Harris) are tracked and
segmented into consistently moving objects

* 6 point geometry
— Allow general perspective cameras

For both approaches

» Point correspondence over time is important
— Strict temporal ordering of data not necessary

» Wide base-line over the sequence is OK
— Not OK for optic flow approaches




The 3D to 2D mapping

In normalized image coordinates
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The affine camera

For a normalized affine camera:
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The affine camera

Can be rewritten as
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The affine camera

The normalized image coordinates become:
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Single-body factorization

» Tomasi & Kanade, Shape from motion
from image streams under orthography:
A factorization method, IJCV 1992
(report 1990)

Multiple points and multiple
observations

* We observe N 3D points at F time points

 We assume that their 3D coordinates are
fixed but the camera is moving
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The data matrix W

« We can represent the elements u; and vy
as two matrices

» Stack them one on top of the other
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Problem formulation

Given that we observe normalized image
coordinates (ug,Vvy) (matrix W)

what can be said about

— The camera motion (matrix M)

— The 3D points (matrix S)

We know that W =M S
We want to factorize W into M and S
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General observations

We notice that

W is a (2F) x N matrix

M is a (2F) x 4 matrix, max rank 4
Sis a4 x N matrix, max rank 4
W=MS =, W has max rank 4

These statements are not true for a
general perspective camera!
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General observations

The columns of W are vectors in R2F

All these vectors are spanned by the 4 columns
of M

All columns of W lie in a 4-dim subspace of R2F
that is determined by M, i.e., by the camera
motion

All these statements are independent of the
ordering of indices (f,i)

— Independent of permutations of rows/columns in W
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Single-body factorization

The Costeira & Kanade article shows how
the formulated problem can be solved

1. Make an SVD of W=U X VT

> should be 4 x 4 diagonal
2.Set: M= U Z?A & S =A1X2VYT

Gives: M S =W, but A still undetermined
3. Determine A by additional constraints
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Single-body factorization

Summary

The data matrix W is of (max) rank 4

We can factorizeitas W=M S
— Algorithm is in the article

M represents the camera motion
S represents the 3D points
Basic assumption: affine camera

When is W of rank < 4?
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Two-body factorization

» Let us consider the case that we have two
objects that are moving
—rigidly (rotation & translation only)
— Independently

 Straight-forward to generalize to multiple
object

» Let us assume that we have ordered the
points such that the N, first points are on
object 1 and the N, last points are on
object 2 (a.k.a. canonical ordering)
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Two-body factorization

e The full data matrix W" is then
W' = (W | W,)

« W, is the (2F) x N, data matrix for points
on object 1

» W, is the (2F) x N, data matrix for points
on object 2
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Two-body factorization

From single-body factorization:

W, =M, Sl M, and S, have
max rank 4 for
k=1,2
W,=M, S,

where we assume M, = M,

19

Two-body factorization

From single-body factorization:

 All columns in W, lie in a 4-dim subspace
determined by M,

 All columns in W, lie in a 4-dim subspace

determined by M, .
The intersection ‘

between the D
spaces may or /
may not be empty 1
(when, why?)
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Two-body factorization

We get Rank 8

/N

S, 0
W* = (M;|M,) (01 SQ>

= W" is of (max) rank 8
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Two-body factorization

From SVD

MiSk = UpXy VL k=1,2

follows

>T 0 vl o
W*_(? v (% ) (% vr)

W* = U* 2+ V*T

Not SVD ! »

Two-body factorization

W* — U*Z*V*T
is not an SVD of W” since U" is not
orthogonal

« However, from svd(U2") = U X RT, we get

W*=UXRIV*T | sw!
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The real problem

* In reality, we do not know which points
belong to which object

* W is the data matrix for the real problem

* There exists (at least one) permutation P

that brings the points to the canonical
order described earlier

W=WP W=WPT
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The real problem

Putting things together gives

W=WPT=UZRWVTPT

This is an SVD of W (why?)
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The real problem

We summarize
* Wis the 2F x (N;+N,) data matrix (known)
W is of (max) rank 8

We want to find a permutation P of the
points that brings them to canonical order
= segmentation

W' =W P
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Problem formulation

« If we can do this we can solve M;, M, and
S;, S, from W' (how?)

* In many applications this last step is not
required, the segmentation is sufficient!

e Problem formulation:

— How do we find P such that W =W P is
canonical form?
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How to solve it

[Boult & Brown, Factorization-based
segmentation of motions, WVM, 1991]

We can compute svd(W) =U X VT

We known that VT = RTVTPT

Form Q = VT = PV'VTPT = PQPT




How to solve it Principal solution

« Main result: 1. Form W from image data
2. Compute svd(W)=U X VT
Q" is N;+N, block N, N, 3. FormQ=Vv VT
diagonal! . T o
4. Find P such that P'Q P = Q" is N;+N,
Q, 0 N, block diagonal (with N,, N, unknown!)
) —
Q"= Step 4. is the main issue!
0 Q | N For free we also get N, and N,!
Multi-body factorization Specific solutions
» From the 2-body case it is straight-forward to generalize e Boult & Brown suggest a simple but unrobust
to the M-body case method in their first paper (1991)

Wis (2F) x (N; + N, +...+ N,

W has (max) rank 4M

The columns of W lie in either of M specific
4-dim subspaces, one subspace per object .

We still want to find a permutation P that brings W to a « Tron & Vidal: The Hopkins 155 data set (2007)
canonical column order '

» Costeira & Kanade suggest an alternative
method in the article (still unrobust) (1998)

. — http://www.vision.jhu.edu/data/hopkins155/
* Main problems )
— We may not know M, the number of objects — Includes an overview of methods to that date
— Noise = Q" is not exactly block diagonal » Elhamifar & Vidal: Spectral clustering (2009)

There are degeneracies! (which, how?)
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Uncalibrated factorization

* In most practical application we have a
uncalibrated camera

Standard image coordinates

Normalized image coordinates | ,,

The affine camera revisited

e Plug in the expression for (u,v,1)
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The affine camera revisited

» The image coordinates become

u\ _ (k1iry +kior2 k11ty +kiota + k13l
v kaor2 k2ot2 + ko3

» Consequently, we can still construct the data
matrix W and do factorization based
segmentation

» However, we cannot compute the camera
motion M, or the 3D coordinates S, from W
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