Geometry in Computer Vision

Spring 2010
Lecture 5A
Three-view geometry

Three-view geometry

- We take 3 images of the world

- How are corresponding points related?
- What relations between the cameras can be inferred from these correspondences?
- Are other correspondences than for points possible?

Epipolar geometry

- Epipolar geometry can be applied to pairs of cameras: $(1,2)(2,3)(3,1)$
- Gives fundamental matrices $\mathbf{F}_{12}, \mathbf{F}_{23}, \mathbf{F}_{31}$
- These, however, are not independent!
- If they are independently estimated, they may not be consistent (meaning what?)

Consistent three-view epipolar geometry

- From each of the fundamental matrices, we can derive a pair of canonical cameras (see lecture 2)
- $\mathrm{F}_{12} \rightarrow \mathrm{C}_{1}, \mathrm{C}_{2}$
$-\mathrm{F}_{23} \rightarrow \mathrm{C}_{2}^{\prime} \mathrm{C}_{3}$
- $\mathbf{F}_{31} \rightarrow \mathbf{C}_{3}^{\prime} \mathbf{C}_{1}^{\prime}$
- These are well-defined up to a 3D homography transformation
- If the fundamental matrices are mutually consistent, it must be possible to find such 3D homography transformations such that $\mathbf{C}_{1}=\mathbf{C}_{1}, \mathbf{C}_{2}=\mathbf{C}_{2}^{\prime}, \mathbf{C}_{3}=\mathbf{C}_{3}^{\prime}$
- This will not be the case, in general, if the fundamental matrices are estimated independently!

Consistent three-view epipolar geometry

- A sufficient condition for consistent threeview epipolar geometry can be formulated as follows:

From $\mathbf{F}_{\mathrm{ij}} \rightarrow$ epipoles \mathbf{e}_{ij} and \mathbf{e}_{ji} (how?)
$\mathbf{e}_{13}{ }^{\top} \mathbf{F}_{12} \mathbf{e}_{23}=\mathbf{e}_{21}{ }^{\top} \mathbf{F}_{23} \mathbf{e}_{31}=\mathbf{e}_{32}{ }^{\top} \mathbf{F}_{31} \mathbf{e}_{12}=0$

- How can we obtain such F's?

2D lines and 3D planes

- Let ll be the dual homogeneous coordinates of a line in an image that depicts the 3D world through camera matrix \mathbf{C}
- If we project lout in the 3D world through the camera center \mathbf{n}, we get a plane \mathbf{p}

2D lines and 3D planes

Line correspondences

- In three views, it turns out to be easer to start looking at line correspondences
- Let \mathbf{L} be a 3D line that is projected into the three cameras as lines $\mathbf{I}_{1}, \mathbf{l}_{2}, \mathbf{l}_{3}$
- The three lines generate three planes:

$$
\begin{aligned}
& p_{1}=C_{1}{ }^{\top} l_{1} \\
& p_{2}=C_{2}^{\top} l_{2} \\
& p_{3}=C_{3}^{\top} l_{3}
\end{aligned}
$$

Line correspondences

- These planes must intersect at the line \mathbf{L}
- The dual Plücker coordinates of L are given, e.g., by $\mathbf{p}_{2} \mathbf{p}_{3}{ }^{\top}-\mathbf{p}_{3} \mathbf{p}_{2}{ }^{\top}$ (lecture 1)
- Combined with \mathbf{n}_{1} this gives a plane that projects into a line in image 1:

$$
\begin{gathered}
\text { The plane }=\left(\mathbf{p}_{2} \mathbf{p}_{3}^{\top}-\mathbf{p}_{3} \mathbf{p}_{2}{ }^{\top}\right) \mathbf{n}_{1} \\
\text { line in image } 1=\mathbf{C}_{1}+\mathrm{T}\left(\mathbf{p}_{2} \mathbf{p}_{3}^{\top}-\mathbf{p}_{3} \mathbf{p}_{2}^{\top}\right) \mathbf{n}_{1}
\end{gathered}
$$

- This line must be \mathbf{I}_{1} !

Trifocal tensor

- Each element of \mathbf{l}_{1} is a quadratic form in I_{2} and I_{3} :

$$
\left(\mathbf{I}_{1}\right)_{\mathrm{i}} \sim \mathbf{l}_{2}^{\top} \mathrm{T}_{\mathrm{i}} \mathbf{I}_{3}
$$

- We summarize

$$
\begin{aligned}
& \mathbf{l}_{1} \sim \mathbf{C}_{1}{ }^{+\top}\left(\mathbf{p}_{2} \mathbf{p}_{3}^{\top}-\mathbf{p}_{3} \mathbf{p}_{2}^{\top}\right) \mathbf{n}_{1} \\
& \mathbf{l}_{1} \sim \mathbf{C}_{1}{ }^{+\top}\left(\mathbf{C}_{2}{ }^{\top} \mathbf{l}_{2}\right)\left(\mathbf{l}_{3} \mathbf{T}_{3} \mathbf{n}_{1}\right)-\mathbf{C}_{1}{ }^{+\top}\left(\mathbf{C}_{3} \mathrm{I}_{3}\right)\left(\mathbf{l}_{2}{ }^{\top} \mathbf{C}_{2} \mathbf{n}_{1}\right)
\end{aligned}
$$

Line correspondences

Trifocal tensor

- We write the last relation as

$$
\mathbf{I}_{1} \sim \mathbf{I}_{2}^{\top}\left[\mathbf{T}_{1}, \mathbf{T}_{2}, \mathbf{T}_{3}\right] \mathbf{I}_{3}
$$

- The trifocal tensor \mathscr{T} is the three matrices

$$
\left[\mathbf{T}_{1}, \mathbf{T}_{2}, \mathbf{T}_{3}\right]
$$

- \mathscr{T} is an element of a projective space (why?)

Trifocal tensors

- \mathscr{T} is derived by considering how lines in the three images are related
- It is, however, not derived in a symmetric way:
- it produces a line \mathbf{I}_{1} specifically in image 1
- There must be three trifocal tensors:
- one for each of the three images
- In the following: \mathscr{T} refers to the one that produces \mathbf{I}_{1} (unless stated otherwise)

Degrees of freedom and internal constraints

- \mathscr{T} has $3^{3}=27$ elements
- It has 27-1=26 d.o.f. as a general projective element
- It is computed from $\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{C}_{3}$
- Each \mathbf{C}_{k} has 11 degrees of freedom
- In total $3 \times 11=33$ degrees of freedom
\mathscr{T} is independent of the 3D coordinate system
\Rightarrow invariant to any 3D homography transformation \mathbf{H}
- H has 15 degree of freedom
\mathscr{T} has 33-15 = 18 d.o.f.
- \mathscr{T} must satisfy 26-18 = 8 internal constraints to be properly related to 3 views

Point-line-line correspondence

- Let \mathbf{x} be a point on \mathbf{L}, projected into image 1 as y_{1}
- y_{1} must lie on I_{1} :

$$
\mathbf{y}_{1} \cdot \mathbf{l}_{1}=0
$$

- With $\mathbf{y}_{1}=\left(y_{1}, y_{2}, y_{3}\right)$ we get

$$
0=\mathbf{I}_{2}^{\top}\left(\mathbf{T}_{1} y_{1}+\mathbf{T}_{2} y_{2}+\mathbf{T}_{3} y_{3}\right) \mathbf{I}_{3}
$$

- \mathscr{T} gives a relation between a point in image 1 and corresponding lines in image 2 and 3

Point-line-line correspondence

Point-point-point correspondences

- Start with a 3D point \mathbf{x}, projected onto \mathbf{y}_{k} in image $k, k=1,2,3$
- Consider the set of all 3D lines \mathbf{L} that intersect \mathbf{x}
- L is projected onto lines \mathbf{I}_{2} and \mathbf{I}_{3} in images 2 and 3, respectively
- The set of all such \mathbf{L} produces a set of lines \mathbf{l}_{2} and a set of lines \mathbf{I}_{3}
- All lines \mathbf{l}_{2} intersect \mathbf{y}_{2} and all lines \mathbf{l}_{3} intersect \mathbf{y}_{3}
- $\mathbf{l}_{2} \sim\left[\mathbf{y}_{2}\right]_{\times} \mathbf{c}_{2}$ for all possible $\mathbf{c}_{2} \in R^{3}$,
$\mathbf{l}_{3} \sim\left[\mathbf{y}_{3}\right]_{\times} \mathbf{c}_{3}$ for all possible $\mathbf{c}_{3} \in R^{3}$

Point-point-point correspondences

- We summarize

$$
0=\mathbf{c}_{2}^{\top}\left[\mathbf{y}_{2}\right]_{x}^{\top}\left(\mathbf{T}_{1} y_{1}+\mathbf{T}_{2} y_{2}+\mathbf{T}_{3} y_{3}\right)\left[\mathbf{y}_{3}\right]_{x} \mathbf{c}_{3}
$$

for all $\mathbf{c}_{2}, \mathbf{c}_{3} \in R^{3}$

- This implies

$$
\mathbf{0}=\left[\mathbf{y}_{2}\right]_{\times}^{\top}\left(\mathbf{T}_{1} y_{1}+\mathbf{T}_{2} y_{2}+\mathbf{T}_{3} y_{3}\right)\left[\mathbf{y}_{3}\right]_{\times}
$$

Point-point-point correspondences

The trifocal tensor

- For corresponding points in the three views, $\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}$, we get 9 matching
constraints

$$
\left[\mathbf{y}_{2}\right]_{\times}^{\top}\left(\mathbf{T}_{1} y_{1}+\mathbf{T}_{2} y_{2}+\mathbf{T}_{3} y_{3}\right)\left[\mathbf{y}_{3}\right]_{x}=\mathbf{0}
$$

- But only 4 that are linearly independent (why?)

Given that \mathscr{T} is given

- It provides 4 linearly independent point-point-point constraints
- It provides 1 point-line-line constraint
- It provides 2 line-line-line constraints (how?)
- It provides 3 point-point-line constraints (how?)

The trifocal tensors

There are 3 trifocal tensors:

- Each gives a unique point-line-line constraint (with the point in a distinct view)
- They provide up to $3 \times 4=12$ linearly independent point-point-point constraints
- They provide up to $3 \times 2=6$ linearly independent line-line-line constraints
- There are, however, linearly dependence among the last two constraints, reducing them to smaller numbers

F and C from

Given \mathscr{T} it possible to extract

- the three fundamental matrices
F_{12}, F_{23}, F_{31}
- See HZ
- From these Fs we get all the epipoles
- These Fs are three-view consistent!
- the three camera matrices $\mathbf{C}_{1}, \mathbf{C}_{2}$ and \mathbf{C}_{3}
- See HZ

Estimation of \mathscr{T}

Linear estimation:

- Each triplet of corresponding points provides 4 linear constraints in \mathscr{T}
- 7 triplets of corresponding points gives
$7 \times 4=28$ linear constraints in \mathscr{T}
- This is sufficient for determining \mathscr{T} by solving a linear equation (why?)
- Remember: Hartley-normalization!
- This estimated \mathscr{T} may not be a proper trifocal tensor

Estimation of \mathscr{T}

Non-linear estimation of \mathscr{T} :

- Find initial estimate of \mathscr{T} using a linear method
- Reconstruct the three cameras
- Triangulate 3D points from corresponding image points
- Minimize the re-projection error in the images over the 3D points and the camera matrices (Levenberg-Marquardt)

F vs T

- Represents a point-point constraint
- Has 7 d.o.f.
- Uniquely represents the uncalibrated epipolar geometry
- Can be estimated linearly from 8 correspondences
- Internal constraint is trivial
- Relations to \mathbf{C} and \mathbf{e} are trivial
- F_{12} does not anything about F_{23} and F_{31}
- Represents a point-line-line constraint, or 4 point-pointpoint constraints
- Has 18 d.o.f.
- Uniquely represents the uncalibrated three-view geometry
- Can be estimated linearly from 7 correspondences
- Internal constraints are nontrivial
- Relations to C, F, and e exist but are not straight-forward
- Relations between one trifocal tensor and the other two exists but are not stright-forward

General conclusions for the 3 view case

- The algebraic desciption of the three-view geometry is more complicated than the epipolar geometry
- Internal constraints for \mathscr{T} ?
- How can they be enforced?
- Simpler relations between \mathscr{T} and other geometric objects?
- Minimal parameterization of \mathscr{T} ?

The key to three-view geometry

- [Nordberg, A minimal parameterization of the trifocal tensor, CVPR 2009]
- We know that F can be decomposed as

$$
\mathbf{F}=\mathbf{U} \mathbf{S} \mathbf{V}^{\top}
$$

\mathbf{U} and \mathbf{V} are orthogonal \mathbf{S} is diagonal of rank 2

Important message
\Leftarrow This means that if we transform the two image spaces by means of \mathbf{U} and \mathbf{V}, respectively, then the fundamental matrix is simply \mathbf{S}

- Can we find a similar decomposition of $\mathscr{\mathscr { T }}$?

The key to three-view geometry

Main result:

- We can always find
- (non-unique) orthogonal homography transformations of the image spaces
- A general 3D homography transformation of the 3D space such that

$$
\begin{aligned}
& \mathbf{C}_{1}^{\prime}=[\mathbf{I} \mid \mathbf{0}] \text {, } \\
& \mathrm{C}_{2}^{\prime} \sim\left(\begin{array}{cccc}
c_{0} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
c_{1} & 0 & c_{2} & 0
\end{array}\right), \quad \mathrm{C}_{3}^{\prime} \sim\left(\begin{array}{cccc}
c_{3} & 0 & 0 & 0 \\
c_{4} & c_{5} & c_{6} & 1 \\
c_{7} & c_{8} & c_{9} & 0
\end{array}\right)
\end{aligned}
$$

The key to three-view geometry

- Once these transformations have been applied it follows that

$$
\begin{aligned}
& \mathbf{T}_{1,1}^{\prime}=\mathbf{a}_{1} \mathbf{b}_{4}^{T}-\mathbf{a}_{4} \mathbf{b}_{1}^{T}=\left(\begin{array}{ccc}
0 & c_{0} & 0 \\
-c_{3} & -c_{4} & -c_{7} \\
0 & c_{1} & 0
\end{array}\right), \quad \begin{array}{c}
\text { Only } 10 \text { non-zero } \\
\text { elements }
\end{array} \\
& \mathbf{T}_{2,1}^{\prime}=\mathbf{a}_{2} \mathbf{b}_{4}^{T}-\mathbf{a}_{4} \mathbf{b}_{2}^{T}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -c_{5} & -c_{8} \\
0 & 0 & 0
\end{array}\right), \quad \begin{array}{c}
\mathscr{T} \text { can be } \\
\text { minimally } \\
\text { parameterized by } \\
\text { the 3 SO(3) }
\end{array} \\
& \mathbf{T}_{3,1}^{\prime}=\mathbf{a}_{3} \mathbf{b}_{4}^{T}-\mathbf{a}_{4} \mathbf{b}_{3}^{T}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -c_{6} & -c_{9} \\
0 & c_{2} & 0
\end{array}\right) . \begin{array}{c}
\begin{array}{c}
\text { transformations and the } \\
10 \text { non-zero elements }
\end{array}
\end{array}
\end{aligned}
$$

The key to three-view geometry

- The other two trifocal tensors are given by:

$$
\begin{array}{rlrl}
\mathbf{T}_{1,2}^{\prime} & \sim\left(\begin{array}{ccc}
0 & c_{2} c_{5} & c_{2} c_{8} \\
-c_{2} c_{3} & c_{1} c_{6}-c_{2} c_{4} & c_{1} c_{9}-c_{2} c_{7} \\
0 & -c_{1} c_{5} & -c_{1} c_{8}
\end{array}\right) & \mathbf{T}_{1,3}^{\prime} \sim\left(\begin{array}{ccc}
0 & c_{6} c_{8}-c_{5} c_{9} & -c_{2} c_{8} \\
-c_{0} c_{9} & c_{4} c_{9}-c_{6} c_{7} & c_{2} c_{7}-c_{1} c_{9} \\
c_{0} c_{8} & c_{5} c_{7}-c_{4} c_{8} & c_{1} c_{8}
\end{array}\right), \\
\mathbf{T}_{2,2}^{\prime} \sim\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -c_{0} c_{2} & 0 \\
0 & 0 & 0
\end{array}\right), & \mathbf{T}_{2,3}^{\prime} \sim\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -c_{3} c_{9} & 0 \\
0 & c_{3} c_{8} & 0
\end{array}\right), \\
\mathbf{T}_{3,2}^{\prime} \sim\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -c_{0} c_{6} & -c_{0} c_{9} \\
0 & c_{0} c_{5} & c_{0} c_{8}
\end{array}\right) . & \mathbf{T}_{3,3}^{\prime} \sim\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & c_{3} c_{6} & -c_{2} c_{3} \\
0 & -c_{3} c_{5} & 0
\end{array}\right) .
\end{array}
$$

2nd order expressions in the canonical cameras or in

The key to three-view geometry

- The fundamental matrices become:

The key to three-view geometry

- The paper suggest an algorithm for determining the orthogonal homography transformations of the coordinates for a general \mathscr{T}
- e.g., on that is estimated from a linear method
- These transformations will always be able to set the "0-elements" in \mathbf{T}_{k} to 0 if they are not at the corners
- Constraint enforcement can then be achieved by setting the corner element to 0 and re-transform

The key to three-view geometry

Summary

- Once the orthogonal homography transformatins on the image domains are applied:
- Three-view geometry is a piece of cake!
- (How does an orthogonal homography transform images?)

