Geometry in Computer Vision Spring 2010 Lecture 5A Three-view geometry	 We take 3 images of the world Image: Constant of the second s
 Epipolar geometry can be applied to pairs of cameras: (1,2) (2,3) (3,1) Gives fundamental matrices F₁₂, F₂₃, F₃₁ These, however, are not independent! If they are independently estimated, they may not be consistent (meaning what?) 	 Consistent three-view epipolar geometry From each of the fundamental matrices, we can derive a pair of <i>canonical cameras</i> (see lecture 2) F₁₂ → C₁, C₂ F₂₃ → C'₂, C₃ F₃₁ → C'₃, C'₁ These are well-defined up to a 3D homography transformation If the fundamental matrices are mutually consistent, it must be possible to find such 3D homography transformations such that C₁=C'₁, C₂=C'₂, C₃=C'₃ This will not be the case, in general, if the fundamental matrices are estimated independently!

Three-view geometry

Consistent three-view epipolar geometry

 A sufficient condition for consistent threeview epipolar geometry can be formulated as follows:

From $\mathbf{F}_{ij} \rightarrow \text{epipoles } \mathbf{e}_{ij} \text{ and } \mathbf{e}_{ji} \text{ (how?)}$

 $\mathbf{e}_{13}{}^{\mathsf{T}}\mathbf{F}_{12}\mathbf{e}_{23} = \mathbf{e}_{21}{}^{\mathsf{T}}\mathbf{F}_{23}\mathbf{e}_{31} = \mathbf{e}_{32}{}^{\mathsf{T}}\mathbf{F}_{31}\mathbf{e}_{12} = 0$

5

• How can we obtain such F's?

2D lines and 3D planes

- Let I be the dual homogeneous coordinates of a line in an image that depicts the 3D world through camera matrix C
- If we project I out in the 3D world through the camera center n, we get a plane p

2D lines and 3D planes

Line correspondences

- In three views, it turns out to be easer to start looking at line correspondences
- Let L be a 3D line that is projected into the three cameras as lines l₁, l₂, l₃
- The three lines generate three planes:

8

Line correspondences

- These planes must intersect at the line $\ensuremath{\textbf{L}}$
- The dual Plücker coordinates of L are given, e.g., by p₂p₃^T - p₃p₂^T (lecture 1)
- Combined with n₁ this gives a plane that projects into a line in image 1:

The plane = $(\mathbf{p}_2\mathbf{p}_3^T - \mathbf{p}_3\mathbf{p}_2^T)\mathbf{n}_1$ line in image 1 = $\mathbf{C}_1^{+T}(\mathbf{p}_2\mathbf{p}_3^T - \mathbf{p}_3\mathbf{p}_2^T)\mathbf{n}_1$

• This line must be I_1 !

• We summarize

 $\boldsymbol{l}_1 \sim \boldsymbol{C}_1^{+\text{T}}(\boldsymbol{p}_2\boldsymbol{p}_3^{\text{T}} - \boldsymbol{p}_3\boldsymbol{p}_2^{\text{T}}) ~\boldsymbol{n}_1$

 $\boldsymbol{l}_1 \sim \boldsymbol{C}_1^{+\mathsf{T}}(\boldsymbol{C}_2^{\mathsf{T}}\boldsymbol{l}_2)(\boldsymbol{l}_3^{\mathsf{T}}\boldsymbol{C}_3\boldsymbol{n}_1) - \boldsymbol{C}_1^{+\mathsf{T}}(\boldsymbol{C}_3^{\mathsf{T}}\boldsymbol{l}_3)(\boldsymbol{l}_2^{\mathsf{T}}\boldsymbol{C}_2\boldsymbol{n}_1)$

10

Trifocal tensor

• Each element of l_1 is a quadratic form in l_2 and l_3 :

- The three 3 × 3 matrices T_i are given by C₂, C₃, and n₁ (the last is derived from C₁)
- Together they form a 3 × 3 × 3 *trifocal tensor T*

Trifocal tensor

• We write the last relation as

 $\boldsymbol{l}_1 \sim \boldsymbol{l}_2^\top \left[\boldsymbol{T}_1, \boldsymbol{T}_2, \boldsymbol{T}_3\right] \boldsymbol{l}_3$

• The trifocal tensor $\ensuremath{\mathscr{T}}$ is the three matrices

• T is an element of a projective space (why?)

11

Trifocal tensors

- \mathscr{T} is derived by considering how lines in the three images are related
- It is, however, not derived in a symmetric way:
 - it produces a line \mathbf{l}_1 specifically in image 1
- There must be three trifocal tensors:
 - one for each of the three images
- In the following: *T* refers to the one that produces l₁ (unless stated otherwise)

13

15

Degrees of freedom and internal constraints

- Thas 33=27 elements
 - It has 27-1=26 d.o.f. as a general projective element
- It is computed from **C**₁, **C**₂, **C**₃
 - Each \mathbf{C}_k has 11 degrees of freedom
 - In total $3 \times 11 = 33$ degrees of freedom
 - *T* is independent of the 3D coordinate system
 ⇒ invariant to any 3D homography transformation H
 - H has 15 degree of freedom
 - . 𝖅 has 33-15 = 18 d.o.f.
- T must satisfy 26-18 = 8 internal constraints to be properly related to 3 views

Point-line-line correspondence

- Let x be a point on L, projected into image 1 as y₁
- \mathbf{y}_1 must lie on \mathbf{l}_1 :

• With $\mathbf{y}_1 = (y_1, y_2, y_3)$ we get

$\mathbf{0} = \mathbf{I}_2^\top \left(\mathbf{T}_1 \boldsymbol{y}_1 {+} \mathbf{T}_2 \boldsymbol{y}_2 {+} \mathbf{T}_3 \boldsymbol{y}_3 \right) \mathbf{I}_3$

S gives a relation between a point in image 1 and *corresponding* lines in image 2 and 3

Point-line-line correspondence

Point-point correspondences

- Start with a 3D point x, projected onto y_k in image k, k=1, 2, 3
- Consider the set of all 3D lines L that intersect x
- L is projected onto lines l₂ and l₃ in images 2 and 3, respectively
- The set of all such L produces a set of lines \mathbf{l}_2 and a set of lines \mathbf{l}_3
- All lines I₂ intersect y₂ and all lines I₃ intersect y₃
- $\mathbf{l}_2 \sim [\mathbf{y}_2]_{\times} \mathbf{c}_2$ for all possible $\mathbf{c}_2 \in R^3$, $\mathbf{l}_3 \sim [\mathbf{y}_3]_{\times} \mathbf{c}_3$ for all possible $\mathbf{c}_3 \in R^3$

17

Point-point correspondences

• We summarize

 $0 = \mathbf{c}_2^{\mathsf{T}}[\mathbf{y}_2]_{\times}^{\mathsf{T}}(\mathbf{T}_1y_1 + \mathbf{T}_2y_2 + \mathbf{T}_3y_3) [\mathbf{y}_3]_{\times}\mathbf{c}_3$

for all $\mathbf{c}_2, \, \mathbf{c}_3 \in \mathbb{R}^3$

• This implies

 $\mathbf{0} = [\mathbf{y}_2]_{\times}^{\mathsf{T}} (\mathbf{T}_1 y_1 + \mathbf{T}_2 y_2 + \mathbf{T}_3 y_3) [\mathbf{y}_3]_{\times}$

Point-point correspondences

 For corresponding points in the three views, y₁, y₂, y₃, we get 9 matching constraints

3 × 3 zero matrix

 $[\mathbf{y}_2]_{\times}^{\mathsf{T}}(\mathbf{T}_1y_1 + \mathbf{T}_2y_2 + \mathbf{T}_3y_3) [\mathbf{y}_3]_{\times} = \mathbf{0}$

 But only 4 that are linearly independent (why?)

The trifocal tensor

Given that \mathscr{T} is given

- It provides 4 linearly independent point-point-point constraints
- It provides 1 point-line-line constraint
- It provides 2 line-line-line constraints (how?)
- It provides 3 point-point-line constraints (how?)

The trifocal tensors

There are 3 trifocal tensors:

- Each gives a unique point-line-line constraint (with the point in a distinct view)
- They provide <u>up to</u> 3 × 4 = 12 linearly independent point-point-point constraints
- They provide <u>up to</u> $3 \times 2 = 6$ linearly independent line-line constraints
- There are, however, linearly dependence among the last two constraints, reducing them to smaller numbers

F and **C** from \mathscr{T}

Given \mathscr{T} it possible to extract

- the three fundamental matrices
 F₁₂, F₂₃, F₃₁
 - See HZ
 - From these $\ensuremath{\textbf{F}}\xspaces$ we get all the epipoles
 - These Fs are three-view consistent!
- the three camera matrices ${\bf C}_1,\,{\bf C}_2$ and ${\bf C}_3$ See HZ

22

Estimation of ${\mathscr T}$

Linear estimation:

- Each triplet of corresponding points provides 4 linear constraints in \mathscr{T}
- 7 triplets of corresponding points gives
 7 × 4 = 28 linear constraints in *T*
 - This is sufficient for determining \mathscr{T} by solving a linear equation (why?)
- Remember: Hartley-normalization!
- This estimated *T* may not be a proper trifocal tensor

Estimation of \mathcal{T}

Non-linear estimation of \mathcal{T} :

- Find initial estimate of ${\mathscr T}$ using a linear method
- Reconstruct the three cameras
- Triangulate 3D points from corresponding image points
- Minimize the re-projection error in the images over the 3D points and the camera matrices (Levenberg-Marquardt)

F vs T

- Represents a point-point constraint
- Has 7 d.o.f.
- Uniquely represents the uncalibrated epipolar geometry
- Can be estimated linearly from 8 correspondences
- Internal constraint is trivial
- Relations to **C** and **e** are trivial
- \mathbf{F}_{12} does not anything about \mathbf{F}_{23} and \mathbf{F}_{31}

- Represents a point-line-line constraint, or 4 point-pointpoint constraints
- Has 18 d.o.f.
- Uniquely represents the uncalibrated three-view geometry
- Can be estimated linearly from 7 correspondences
- Internal constraints are nontrivial
- Relations to **C**, **F**, and **e** exist but are not straight-forward
- Relations between one trifocal tensor and the other two exists but are not stright-forward

25

General conclusions for the 3 view case

- The algebraic desciption of the three-view geometry is more complicated than the epipolar geometry
 - Internal constraints for \mathcal{T} ?
 - How can they be enforced?
 - Simpler relations between \mathscr{T} and other geometric objects?
 - Minimal parameterization of \mathcal{T} ?

26

The key to three-view geometry

- [Nordberg, A minimal parameterization of the trifocal tensor, CVPR 2009]
- We know that F can be decomposed as

 $\mathbf{F} = \mathbf{U} \ \mathbf{S} \ \mathbf{V}^{\mathsf{T}}$

U and **V** are orthogonal **S** is diagonal of rank 2

Important message: ← This means that if we transform the two image spaces by means of **U** and **V**, respectively, then the fundamental matrix is simply **S**

• Can we find a similar decomposition of \mathcal{T} ?

The key to three-view geometry

Main result:

- We can always find
 - (non-unique) orthogonal homography transformations of the image spaces
 - A general 3D homography transformation of the 3D space such that

$$\begin{aligned} \mathbf{C}_1' &= \left[\begin{array}{ccc} \mathbf{I} \mid \mathbf{0} \end{array} \right], \\ \mathbf{C}_2' &\sim \begin{pmatrix} c_0 & 0 & 0 \\ 0 & 0 & 1 \\ c_1 & 0 & c_2 \end{array} \end{pmatrix}, \quad \mathbf{C}_3' &\sim \begin{pmatrix} c_3 & 0 & 0 & 0 \\ c_4 & c_5 & c_6 & 1 \\ c_7 & c_8 & c_9 \end{array} \right). \end{aligned}$$

The key to three-view geometry

• Once these transformations have been applied it follows that

$$\begin{split} \mathbf{T}_{1,1}' &= \mathbf{a}_1 \mathbf{b}_4^T - \mathbf{a}_4 \mathbf{b}_1^T = \begin{pmatrix} 0 & c_0 & 0 \\ -c_3 & -c_4 & -c_7 \\ 0 & c_1 & 0 \end{pmatrix}, & \begin{array}{c} \text{Only 10 non-zero} \\ \text{elements} \\ \\ \mathbf{T}_{2,1}' &= \mathbf{a}_2 \mathbf{b}_4^T - \mathbf{a}_4 \mathbf{b}_2^T = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -c_5 & -c_8 \\ 0 & 0 & 0 \end{pmatrix}, \\ \mathbf{T}_{3,1}' &= \mathbf{a}_3 \mathbf{b}_4^T - \mathbf{a}_4 \mathbf{b}_3^T = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -c_6 & -c_9 \\ 0 & c_2 & 0 \end{pmatrix}. & \begin{array}{c} \mathbf{\mathcal{T}} \text{can be} \\ \text{minimally} \\ \text{parameterized by} \\ \text{the 3 SO(3)} \\ \text{transformations and the} \\ 10 \text{ non-zero elements} \\ \end{array} \end{split}$$

The key to three-view geometry

• The fundamental matrices become:

The key to three-view geometry

• The other two trifocal tensors are given by:

The key to three-view geometry

- The paper suggest an algorithm for determining the orthogonal homography transformations of the coordinates for a general \mathscr{T}
 - e.g., on that is estimated from a linear method
- These transformations will always be able to set the "0-elements" in T'_k to 0 if they are not at the corners
- Constraint enforcement can then be achieved by setting the corner element to 0 and re-transform

The key to three-view geometry

Summary

- Once the orthogonal homography transformatins on the image domains are applied:
 - Three-view geometry is a piece of cake!
- (How does an orthogonal homography transform images?)