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Three-view geometry

Three-view geometry

We take 3 images of the world

How are corresponding points related?

What relations between the cameras can be
inferred from these correspondences?

Are other correspondences than for points
possible?

Epipolar geometry

Epipolar geometry can be applied to pairs
of cameras: (1,2) (2,3) (3,1)

Gives fundamental matrices F,,, F,3, F3;
These, however, are not independent!

If they are independently estimated, they
may not be consistent (meaning what?)

Consistent three-view
epipolar geometry

From each of the fundamental matrices, we can derive a
pair of canonical cameras (see lecture 2)

- F,—>C,C,

- Fp3>C, C,

- F; > C, C
These are well-defined up to a 3D homography
transformation

If the fundamental matrices are mutually consistent, it
must be possible to find such 3D homography
transformations such that

C,=C'y, C,=C’;, C5=C/

This will not be the case, in general, if the fundamental
matrices are estimated independently!




Consistent three-view
epipolar geometry

» A sufficient condition for consistent three-
view epipolar geometry can be formulated
as follows:

From F; — epipoles e; and e; (how?)

€13TF12653 = €51 TF 383 = €3,TF3€1, =0

* How can we obtain such F's?

2D lines and 3D planes

* Let | be the dual homogeneous

coordinates of a line in an image that
depicts the 3D world through camera
matrix C

* If we project | out in the 3D world through
the camera center n, we get a plane p

2D lines and 3D planes

It follows that

p~CTl
| ~ C+Tp

(why?)

Important message:
Not any 3D plane can be projected
onto a line in the image (which can?)

Line correspondences

* In three views, it turns out to be easer to
start looking at line correspondences

* Let L be a 3D line that is projected into the
three cameras as lines |, |, |15

* The three lines generate three planes:

p,= CiTl
p,= C,7l,
Ps= C5Tl; .




Line correspondences

These planes must intersect at the line L
The dual Plucker coordinates of L are given,
e.g., by popsT- psp," (lecture 1)

Combined with n, this gives a plane that projects
into a line in image 1:

The plane = (p,p5T - Pap,"N,
line in image 1 = C;+T(p,PaT — PaP,T) Ny

This line must be |, !

Line correspondences

« We summarize

l; ~ C*T(P2P3sT — P3P2T) Ny

|, ~ C+T(C,TL,)(157C5Ny) - C+7(C5Tl5)(1,7CoN,)
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Trifocal tensor

Each element of |, is a quadratic form in

I2 and I3 - Here we mean that
the r.h.s. is prop to

he I.h.s. with th
/ ts:me_ ssc;;lilr:g tfo?
i T ) alli=1, 2,3
(|1)| ~ I2 TI |3

The three 3 x 3 matrices T, are given by
C,, C;, and n, (the last is derived from C,)

Together they forma 3 x 3 x 3
trifocal tensor .o~
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Trifocal tensor

* We write the last relation as

I, ~ LT [T, T, o] s

e The trifocal tensor .7 is the three matrices

[T1, T2, T4l

* .7 is an element of a projective space (why?)
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Trifocal tensors

« .7 is derived by considering how lines in
the three images are related

* Itis, however, not derived in a symmetric
way:
— it produces a line |, specifically in image 1

» There must be three trifocal tensors:
— one for each of the three images

* In the following: .7 refers to the one that
produces |, (unless stated otherwise)
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Degrees of freedom and
Internal constraints

« .7 has 33=27 elements
— It has 27-1=26 d.o.f. as a general projective element

* Itis computed from C;, C,, C,4
— Each C, has 11 degrees of freedom
— Intotal 3 x 11 = 33 degrees of freedom
7" is independent of the 3D coordinate system

= invariant to any 3D homography transformation H
» H has 15 degree of freedom

7 has 33-15 =18 d.o.f.
* .7 must satisfy 26-18 = 8 internal constraints to be
properly related to 3 views
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Point-line-line correspondence

Let x be a point on L, projected into
image 1 asy,

y, must lie on I;:

y,-1,=0

Withy, = (y1, Y2, Y3) We get

0= 1,7 (Tyy +Toy,+T3ys) s

« .7 gives a relation between a point in image 1
and corresponding lines in image 2 and 3 15

Point-line-line correspondence
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Point-point-point correspondences

» Start with a 3D point x, projected onto
Y inimage k, k=1, 2, 3
» Consider the set of all 3D lines L that intersect x

L is projected onto lines I, and I; in images 2
and 3, respectively

* The set of all such L produces a set of lines |,
and a set of lines I,

 All lines |, intersect y, and all lines 15 intersect y,
e |, ~[y,l, c, for all possible c, € R3,
I; ~ [y3l, c5 for all possible c; € R®
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Point-point-point correspondences

« We summarize

0 = C,TIY,LT(T1y 1+ T2+ T5Y3) [YaliCs

forall c,, c; € R3

e This implies

0 = [y, L.7(Tyy1+Toyo+Taya) [Vsl.
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Point-point-point correspondences

» For corresponding points in the three

views, y,, Y,, Y3, We get 9 matching

3x3

constraints D (TR

/
Yol T(Toy 1+ Toy,+Tays) [Ys]. = 0

* But only 4 that are linearly independent
(Why?)
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The trifocal tensor

Given that .7 is given

* It provides 4 linearly independent
point-point-point constraints

* It provides 1 point-line-line constraint

* It provides 2 line-line-line constraints
(how?)

* It provides 3 point-point-line constraints
(how?)

20




The trifocal tensors

There are 3 trifocal tensors:
» Each gives a unique point-line-line
constraint (with the point in a distinct view)

» They provide up to 3 x 4 = 12 linearly
independent point-point-point constraints

* They provide up to 3 x 2 = 6 linearly
independent line-line-line constraints

» There are, however, linearly dependence
among the last two constraints, reducing
them to smaller numbers
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F and C from 9~

Given .77 it possible to extract
* the three fundamental matrices
I:12’ F23’ I:31
—See HZ
— From these Fs we get all the epipoles
— These Fs are three-view consistent!
» the three camera matrices C,, C, and C,
—See HZ
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Estimation of .9~

Linear estimation:

» Each triplet of corresponding points provides 4
linear constraints in .9~

» 7 triplets of corresponding points gives
7 x 4 = 28 linear constraints in .7~
— This is sufficient for determining .7” by solving a linear

equation (why?)

* Remember: Hartley-normalization!

» This estimated .7~ may not be a proper trifocal
tensor
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Estimation of .9~

Non-linear estimation of .7

» Find initial estimate of .~ using a linear
method

» Reconstruct the three cameras

» Triangulate 3D points from corresponding
image points

» Minimize the re-projection error in the

images over the 3D points and the camera
matrices (Levenberg-Marquardt)
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FvsT

¢ Represents a * Represents a point-line-line

point-point constraint constraint, or 4 point-point-
point constraints
e Has 7d.o.f. * Has 18 d.o.f.
« Uniquely represents the * Uniquely represents the
uncalibrated epipolar geometry uncalibrated three-view
geometry
« Can be estimated linearly from * Can be estimated linearly from
8 correspondences 7 correspondences
¢ Internal constraint is trivial * mt/ii%;?m constraints are non-

Relations to C, F, and e exist
but are not straight-forward
. * Relations between one trifocal
* Fy, does not anything about tensor and the other two exists
Fysand Fgy but are not stright-forward

* Relations to C and e are trivial
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General conclusions for
the 3 view case

» The algebraic desciption of the three-view
geometry is more complicated than the
epipolar geometry
— Internal constraints for .9 ?

— How can they be enforced?

— Simpler relations between .7~ and other
geometric objects?

— Minimal parameterization of .7 ?
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The key to three-view geometry

* [Nordberg, A minimal parameterization of the trifocal
tensor, CVPR 2009]

* We know that F can be decomposed as

F=USVT Important message:

< This means that if we transform
the two image spaces by means

Uand V are orthogonal of U and V, respectively, then

S is diagonal of rank 2 the fundamental matrix is simply S

» Can we find a similar decomposition of .777?
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The key to three-view geometry

Main result;

* We can always find

— (non-unique) orthogonal homography
transformations of the image spaces
— A general 3D homography transformation of
the 3D space such that
C,=[I]0],

&4} 000 C3 000
ijz ~ 0001], ng ~ Cyq Cy Cg 1.
c1 0y 0 o7 cg g 0
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The key to three-view geometry

applied it follows that

T, , =aibl —a;b! =

T}, | = asbl —aybl =

! T T

Once these transformations have been

/ 0 e 0 Only 10 non-zero
—C3 —C4 —C7 |, elements
0 ¢ O
/00 0
0 —cr —cg |, .7~ can be
0 0 0 minimally
parameterized by
( 00 o0 the 3 SO(3)
) ) transformations and the
0 —cg —cg | .
- 10 non-zero elements
0 co O
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The key to three-view geometry

0 0 0
Tho~ |0 —cpea 0],
(H 0 il)
Y] ] 0
rl‘;t_'_! ~ 0 —egeg —coen | .
(l] oty cpey )

2nd order expressions
in the canonical cameras
orin.

0 0 0
Tha~ | 0 —caeq 0],
0 ezex 0
0 0 0
rl.;al__-{ ~ 0 305 cacy | .
0 —egey 0

The other two trifocal tensors are given by:

g 0 Cgeg — O500
"]"l ~ Ve . "

(& ] erd 1.3 ™ —Cply €4y — Coy
108 oty €07 — C4CR

Caly
cacy — €109

108

Note dissimilarity to ./~
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The key to three-view geometry

c1
Fiy = [e1] < C1CyT = ( 0

Co

cr
I vt
Fiz = [e13] C1Cy = (‘b

Cg

cnc2Cy

COCECs — COCHCY

0 —ecq

0 0 —
0 0 )

0 —eg /
0 0 .

0 0

0
0

The fundamental matrices become:

linear expressions
in the canonical cameras
orin o~

3rd order expressions
in the canonical cameras
orin. g

0

C204C8+C1C5C0 — C2C5C7 —C106CE —C203C08 (20305 /
!
Foy= 0

’ Note lack of symmetries between the 3 fundamental matrices

The key to three-view geometry

» The paper suggest an algorithm for determining
the orthogonal homography transformations of
the coordinates for a general .9~

— e.g., on that is estimated from a linear method

» These transformations will always be able to set

the “O-elements” in T', to O if they are not at the

corners

» Constraint enforcement can then be achieved by
setting the corner element to 0 and

re-transform
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The key to three-view geometry

Summary

» Once the orthogonal homography
transformatins on the image domains are
applied:

— Three-view geometry is a piece of cake!

* (How does an orthogonal homography
transform images?)
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