GEOMETRY FOR

 COMPUTER VISION$$
\begin{gathered}
\text { LECTUURE } 5 \text { B: } \\
\text { CALIBRATED MM LTI-VIEW } \\
\text { GEOMETRY }
\end{gathered}
$$

$$
\text { (C) } 2010 \text { P P ER-ERIK FORSSEN }
$$

LECTURE 5B: CALIBRATED MULTI-VIEW GEOMETRY

彞The 5-point Algorithm

諩 P3P

$$
\text { (G) } 2010 \text { FER-EFIK FOFESEN }
$$

TOOLS FOR IMAGEBASED 3D MODELS

期 E.g. Photo Tourism from University of Washington. (has a web demo)

TOOLS FOR IMAGEBASED 3D MODELS

業 E.g. Pons et al. at Inria Sophia-Antipolis CVPR'09

PLANAR DEGENERACY

数 In the uncalibrated case, two view geometry is encoded by the fundamental matrix

$$
\mathbf{x}_{1}^{T} \mathbf{F} \mathbf{x}_{2}=0
$$

PLANAR DEGENERACY

齿In the uncalibrated case，two view geometry is encoded by the fundamental matrix

$$
\mathbf{x}_{1}^{T} \mathbf{F} \mathbf{x}_{2}=0
$$

䋣 If all scene points lie on a plane，or if the camera has undergone a pure rotation（no translation），we also have：

$$
\mathbf{x}_{1}=\mathbf{H} \mathbf{x}_{2}
$$

蝶 Big trouble！

PLANAR DEGENERACY

齢 If $\mathbf{x}_{1}=\mathbf{H x}_{2}$, then the epipolar constraint becomes $\mathbf{x}_{1}^{T} \mathbf{F} \mathbf{x}_{2}=\mathbf{x}_{1}^{T} \mathbf{F} H^{-1} \mathbf{x}_{1}=0$

蝶 For $\mathbf{M}=\mathbf{F H}^{-1}$, this is true whenever \mathbf{M} is skew-symmetric, i.e.

$$
\mathbf{M}^{T}+\mathbf{M}=0 \quad \Leftrightarrow \quad \mathbf{M}=[\mathbf{m}]_{\times}
$$

PLANAR DEGENERACY

数 If $\mathbf{x}_{1}=\mathbf{H x}_{2}$ ，then the epipolar constraint becomes $\mathbf{x}_{1}^{T} \mathbf{F x}_{2}=\mathbf{x}_{1}^{T} \mathbf{F H}{ }^{-1} \mathbf{x}_{1}=0$

蚛 For $\mathbf{M}=\mathbf{F H}^{-1}$ ，this is true whenever \mathbf{M} is skew－symmetric，i．e．

$$
\mathbf{M}^{T}+\mathbf{M}=0 \quad \Leftrightarrow \quad \mathbf{M}=[\mathbf{m}]_{\times}
$$

龂 Thus $\mathbf{F}=[\mathbf{s}]_{\times} \mathbf{H}$ where \mathbf{s} may be chosen freely！

暽A two－parameter family of solutions．

THE 5-POINT ALGORITHM

蝶 Recap from last weeks lecture...
*䡒 In the calibrated case, epipolar geometry is encoded by the essential matrix, \mathbf{E} according to:

$$
\hat{\mathbf{x}}_{1}^{T} \mathbf{E} \hat{\mathbf{x}}_{2}=0
$$

THE 5－POINT ALGORITHM

暽 Recap from last weeks lecture．．．
絜 In the calibrated case，epipolar geometry is encoded by the essential matrix， \mathbf{E} according to：

$$
\hat{\mathbf{x}}_{1}^{T} \mathbf{E} \hat{\mathbf{x}}_{2}=0
$$

彞 In the calibrated setting there are just two possibilities if a plane is seen．See Negahdaripour，Closed－form relationship between the two interpretations of a moving plane．JOSA90

THE 5－POINT ALGORITHM

蟔 \mathbf{E} can be estimated from 5 corresponding points（see today＇s paper）．

政A small sample is useful for RANSAC（le 3）．
䗲The plane degeneracy is essentially avoided．
数 There are however up to 10 solutions for \mathbf{E} to test．

PERSPECTIVE 3－POINT PROBLEM

贯 If we have the calibrated two view geometry， and want to add another view to the model．

粦 Or ，in general from N views to $\mathrm{N}+1$ views．．．
数 First triangulate image points $\hat{\mathbf{x}}$ in two views to get 3D points \mathbf{X}

橉 Then relate \mathbf{X} to image points in the new view

$$
\hat{\mathbf{y}} \sim[\mathbf{R} \mid \mathbf{t}] \mathbf{X}
$$

PERSPECTIVE 3－POINT PROBLEM

触 Each correspondence $\hat{\mathbf{y}} \sim[\mathbf{R} \mid \mathbf{t}] \mathbf{X}$ gives us 2 equations．

䩚 We have 6 unknowns．
粼 \Rightarrow at least 3 points are needed

PERSPECTIVE 3－POINT PROBLEM

触 Each correspondence $\hat{\mathbf{y}} \sim[\mathbf{R} \mid \mathbf{t}] \mathbf{X}$ gives us 2 equations．

酽 We have 6 unknowns．
粼 \Rightarrow at least 3 points are needed
数 If we have outliers，we want to use RANSAC，with a minimal sample set．

PERSPECTIVE 3-POINT PROBLEM

彞 Instead of determining \mathbf{R}, \mathbf{t} directly one typically computes the distances to the 3D points \mathbf{X} from the new camera centre given the side lengths of the 3D triangle, and the projections in the image.

PERSPECTIVE 3-POINT PROBLEM

颣Recall the law of cosines:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \gamma
$$

PERSPECTIVE 3-POINT PROBLEM

. Recall the law of cosines:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \gamma
$$

粼 By expressing the angles via scalar products, we get 3 equations with 3 unknowns.

PERSPECTIVE 3-POINT PROBLEM

絜 Define angles between rays as:

$$
\cos \gamma_{k l}=\frac{\hat{\mathbf{x}}_{k}^{T} \hat{\mathbf{x}}_{l}}{\left\|\hat{\mathbf{x}}_{k}\right\|\left\|\hat{\mathbf{x}}_{l}\right\|}
$$

致 and the side lengths as: $l_{k l}=\left\|\mathbf{X}_{k}-\mathbf{X}_{l}\right\|$

PERSPECTIVE 3-POINT PROBLEM

絜 Define angles between rays as:

$$
\cos \gamma_{k l}=\frac{\hat{\mathbf{x}}_{k}^{T} \hat{\mathbf{x}}_{l}}{\left\|\hat{\mathbf{x}}_{k}\right\|\left\|\hat{\mathbf{x}}_{l}\right\|}
$$

並 and the side lengths as: $l_{k l}=\left\|\mathbf{X}_{k}-\mathbf{X}_{l}\right\|$

$$
\left\{\begin{array}{l}
s_{1}^{2}+s_{2}^{2}-2 s_{1} s_{2} \cos \gamma_{12}=l_{12}^{2} \\
s_{1}^{2}+s_{3}^{2}-2 s_{1} s_{3} \cos \gamma_{13}=l_{13}^{2} \\
s_{2}^{2}+s_{3}^{2}-2 s_{2} s_{3} \cos \gamma_{23}=l_{23}^{2}
\end{array}\right.
$$

* * This can be converted into a fourth degree polynomial, which is then solved.

PERSPECTIVE 3－POINT PROBLEM

数 Numerical issues when solving the 4th degree polynomial．

業 Various approaches compared by Haralick et al．Analysis and Solutions of the Three Point Perspective Pose Estimation Problem，IJCV94

㨋 P3P has up to four real solutions that have to be checked inside RANSAC．

PERSPECTIVE 3-POINT PROBLEM

第 Once we have solved P3P we have 3D points in the new camera.

螺 By relating these to the known 3D points in the world coordinate system, \mathbf{R}, \mathbf{t} are uniquely defined.

BUNDLE ADJUSTMENT

諩 We can now build a decent 3D model by incrementally adding new cameras using P3P.

䗉 But...

BUNDLE ADJUSTMENT

諩 We can now build a decent 3D model by incrementally adding new cameras using P3P.

橉 But for long trajectories, errors will start to accumulate.

BUNDLE ADJUSTMENT

諩 BA is essentially ML over all image correspondences given all cameras, and all 3D points.
$\left\{\mathbf{R}^{*}, \mathbf{t}^{*}, \mathbf{X}^{*}\right\}=\arg \min _{\{\mathbf{R}, \mathbf{t}, \mathbf{X}\}} \sum_{k, l} d\left(\mathbf{x}_{k l}, \mathbf{K}\left[\mathbf{R}_{k} \mid \mathbf{t}_{k}\right] \mathbf{X}_{l}\right)^{2}$

BUNDLE ADJUSTMENT

亚 BA is essentially ML over all image correspondences given all cameras，and all 3D points．（Optionally also intrinsics．）
$\left\{\mathbf{R}^{*}, \mathbf{t}^{*}, \mathbf{X}^{*}\right\}=\arg \min _{\{\mathbf{R}, \mathbf{t}, \mathbf{X}\}} \sum_{k, l} d\left(\mathbf{x}_{k l}, \mathbf{K}\left[\mathbf{R}_{k} \mid \mathbf{t}_{k}\right] \mathbf{X}_{l}\right)^{2}$
傫Needs initial guess．（Obtained by RANSAC on 5－point method and P3P）

粼Open source SBA ，by M．Lourakis et al．

BUNDLE ADJUSTMENT

数 The choice of parametrisation of 3D points， and camera rotations is important．

靿If both near and far points are seen，it might be better to use $\mathbf{X}=\left[X_{1}, X_{2}, X_{3}, X_{4}\right]^{T}$ than $\mathbf{X}=\left[X_{1}, X_{2}, X_{3}, 1\right]^{T}$

㸁 Good choices for rotations are unit quarternions，and axis－angle（see le 7）

BUNDLE ADJUSTMENT

絜 Descent on the cost function is typically done using a regularized Newton method, such as Levenberg-Marquardt

$$
\min \sum_{k, l}\left(\mathbf{x}_{k l}-\mathbf{f}\left(\mathbf{X}_{k}, \mathbf{S}_{l}\right)\right)^{2}
$$

$\sum_{k, l}\left(\mathbf{x}_{k l}-f\left(\mathbf{X}_{k}, \mathbf{S}_{l}+\delta_{l}\right)\right)^{2} \approx \sum_{k, l}\left(\mathbf{x}_{k l}-f\left(\mathbf{X}_{k}, \mathbf{S}_{l}\right)+\mathbf{J}_{k l} \delta_{l}\right)^{2}$
諩 Block structure. Should be utilised for speed!

BUNDLE ADJUSTMENT

諩 Block structure. Should be utilised for speed!

BUNDLE ADJUSTMENT

䩮Too many details to mention.
䡒 See the paper: Triggs et al., Bundle Adjustment A Modern Synthesis, LNCS Book chapter, 2000

DISCUSSION

䗉 Discussion of the paper:
David Nistér, An Efficient Solution to the FivePoint Relative Pose Problem, CVPR'03

FOR NEXT WEEK...

並 Quan Invariants of Six Points and Projective Reconstruction From Three Uncalibrated Images PAMI'95. Sec 1-3

龄Ondrej Chum and Jiri Matas, Matching with PROSAC - Progressive Sample Consensus, CVPR'05

