GEOMETRY FOR

COMPUTER VISION

$$
\begin{gathered}
\text { LECTURE } 7 \text { B: } \\
\text { ROTATION INTERPOLATIOON } \\
\text { AND SMOOTHING }
\end{gathered}
$$

$$
\text { (C) } 2010 \text { PER-ERIK FORSSÉN }
$$

LECTURE 7B： ROTATION INTERPOLATION AND SMOOTHING

龂 Interpolation of SO （3）
絜 Smoothing of $\mathrm{SO}(3)$
䪁 $\mathrm{SO}(3)$ and $\mathrm{SE}(3)$
䩮 Discussion of SLERP article

MOTIVATION

䗉Computer Graphics Animations
粰 After SfM you might want a smoother camera trajectory．

数 Video stabilisation．
数Augmented reality．

SO(3)

䪁 $\mathrm{SO}(3)$ is the group of 3 D rotations (3dof)

$$
\mathrm{SO}(3)=\left\{\mathbf{R} \in \mathbb{R}^{3 \times 3} \mid \mathbf{R}^{T} \mathbf{R}=\mathbf{I}, \operatorname{det}(\mathbf{R})=1\right\}
$$

SO（3）

㽪 $\mathrm{SO}(3)$ is the group of 3D rotations（3dof）

$$
\mathrm{SO}(3)=\left\{\mathbf{R} \in \mathbb{R}^{3 \times 3} \mid \mathbf{R}^{T} \mathbf{R}=\mathbf{I}, \operatorname{det}(\mathbf{R})=1\right\}
$$

䅴 An element in $\mathrm{SO}(3)$ can be represented by three elements from the matrix logarithm of \mathbf{R}

$$
\operatorname{logm}(\mathbf{R})=\left[\begin{array}{ccc}
0 & -n_{3} & n_{2} \\
n_{3} & 0 & -n_{1} \\
-n_{2} & n_{1} & 0
\end{array}\right]
$$

䗒 Or by the 4 －elements in a unit quaternion

$$
\mathbf{q}=\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \hat{\mathbf{n}}\right)
$$

SO（3）

㽪 $\mathrm{SO}(3)$ is the group of 3D rotations（3dof）

$$
\mathrm{SO}(3)=\left\{\mathbf{R} \in \mathbb{R}^{3 \times 3} \mid \mathbf{R}^{T} \mathbf{R}=\mathbf{I}, \operatorname{det}(\mathbf{R})=1\right\}
$$

䅴 An element in $\mathrm{SO}(3)$ can be represented by three elements from the matrix logarithm of \mathbf{R}

$$
\operatorname{logm}(\mathbf{R})=\left[\begin{array}{ccc}
0 & -n_{3} & n_{2} \\
n_{3} & 0 & -n_{1} \\
-n_{2} & n_{1} & 0
\end{array}\right] \in \operatorname{so}(3)
$$

䗒 Or by the 4 －elements in a unit quaternion

$$
\mathbf{q}=\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \hat{\mathbf{n}}\right) \quad \in \mathrm{SU}(2)
$$

SLERP

缐SLERP (see today's paper) dictates that we should interpolate two rotations by applying parts of the intermediate rotation, followed by the first rotation

$$
\operatorname{SLERP}\left(\mathbf{q}_{1}, \mathbf{q}_{2}, w\right)=\mathbf{q}_{1}\left(\mathbf{q}_{1}^{-1} \mathbf{q}_{2}\right)^{w}
$$

数 Or if we use rotation matrices

$$
\operatorname{SLERP}\left(\mathbf{R}_{1}, \mathbf{R}_{2}, w\right)=\mathbf{R}_{1} \exp \left(w \log \left(\mathbf{R}_{1}^{T} \mathbf{R}_{2}\right)\right)
$$

SLERP

渋 The SLERP construction is a geodesic on SO (3), i.e. a walk along the shortest path, on the manifold, between the two rotations.

Geodesic on the sphere

SLERP

渋 The SLERP construction is a geodesic on SO (3), i.e. a walk along the shortest path, on the manifold, between the two rotations.

蝶If we use unit quaternions, the geodesic lies on a 4D sphere.

INTERPOLATION ON SO(3)

縕 We can interpolate between key rotations on SO(3) using Bézier curves as in today's paper.

彞 Another alternative is to define cubic splines directly on the rotation group as described in:
Park and Ravani, Smooth Invariant Interpolation of Rotations, ACM Transactions on Graphics 1997.

INTERPOLATION ON SO(3)

蝶 A natural cubic opline on \mathbb{R}^{n} has the form

$$
\mathbf{y}(t)=\mathbf{a}_{i} \tau^{3}+\mathbf{b}_{i} \tau^{2}+\mathbf{c}_{i} \tau+\mathbf{d}_{i}, \quad \tau=\frac{t-t_{i}}{t_{i+1}-t_{i}}
$$

INTERPOLATION ON SO（3）

期 A natural cubic spline on \mathbb{R}^{n} has the form

$$
\mathbf{y}(t)=\mathbf{a}_{i} \tau^{3}+\mathbf{b}_{i} \tau^{2}+\mathbf{c}_{i} \tau+\mathbf{d}_{i}, \quad \tau=\frac{t-t_{i}}{t_{i+1}-t_{i}}
$$

糍 $\mathrm{On} \mathrm{SO}(3)$ we instead get the expression
$\mathbf{R}(t)=\mathbf{R}_{i-1} e^{\left[\mathbf{a}_{i} \tau^{3}+\mathbf{b}_{i} \tau^{2}+\mathbf{c}_{i} \tau\right]_{\times}}, \quad \tau=\frac{t-t_{i}}{t_{i+1}-t_{i}}$
螺 \mathbf{b} corresponds to angular acceleration，and \mathbf{c} is angular the velocity．
${ }^{\text {漛 }}$ Initialise \mathbf{b}_{0} and $\mathbf{c}_{\mathbf{0}}$ by setting them to 0

INTERPOLATION ON SO（3）

漛 $\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{i}}, \mathbf{c}_{\mathbf{i}}$ can be computed recursively，from the previous values： $\mathbf{a}_{\mathbf{i - 1}}, \mathbf{b}_{\mathbf{i - 1}}, \mathbf{c}_{\mathbf{i}-1}$

数 Park and Ravani＇s scheme is more efficient than the Bézier curves of Shoemake＇s

蝶 The Spline approximately minimises integrated angular acceleration of the curve．

ROTATION SMOOTHING

桃 Problem: We have a sequence of noisy rotations, and want a smoother trajectory.

ROTATION SMOOTHING

龉 For each temporal window, this can be solved by ML as:

$$
\mathbf{R}^{*}=\arg \min _{\mathbf{R} \in S O(3)} \sum_{k} d_{\mathrm{geo}}\left(\mathbf{R}, \mathbf{R}_{k}\right)^{2}
$$

㸁 Where

$$
\left.d_{\mathrm{geo}}\left(\mathbf{R}_{1}, \mathbf{R}_{2}\right)^{2}=\frac{1}{2} \right\rvert\,\left\|\operatorname{logm}\left(\mathbf{R}_{1}^{T} \mathbf{R}_{2}\right)\right\|_{\text {fro }}^{2}
$$

ROTATION SMOOTHING

数 For each temporal window，this can be solved by ML as：

$$
\mathbf{R}^{*}=\arg \min _{\mathbf{R} \in S O(3)} \sum_{k} d_{\mathrm{geo}}\left(\mathbf{R}, \mathbf{R}_{k}\right)^{2}
$$

㲫 Where

$$
\left.d_{\mathrm{geo}}\left(\mathbf{R}_{1}, \mathbf{R}_{2}\right)^{2}=\frac{1}{2} \right\rvert\,\left\|\operatorname{logm}\left(\mathbf{R}_{1}^{T} \mathbf{R}_{2}\right)\right\|_{\text {fro }}^{2}
$$

䡒 Iterative search．Maybe too slow ：－（
＊There are fast and nearly as good alternatives ：－）

ROTATION SMOOTHING

䩚 For a sequence of unit quaternions

$$
\begin{aligned}
& \mathbf{q}_{k}, \quad \mathbf{q}_{k+1}, \quad \mathbf{q}_{k+2}, \ldots \\
& \quad \mathbf{q}_{k}=\left(\cos \frac{\theta_{k}}{2}, \sin \frac{\theta_{k}}{2} \hat{\mathbf{n}}_{k}\right)
\end{aligned}
$$

溸 Note that \mathbf{q}_{k} and $-\mathbf{q}_{k}$ represent the same rotation（double folding property）

龉 We need to first ensure that $\mathbf{q}_{k} \cdot \mathbf{q}_{l}>0$
蝮 Now we can simply average them！
(G) ДO IOFEF-EFIK FOFESEN

ROTATION SMOOTHING

数 If we have a sequence of unit quaternions

$$
\begin{aligned}
& \mathbf{q}_{k}, \quad \mathbf{q}_{k+1}, \quad \mathbf{q}_{k+2}, \ldots \\
& \quad \mathbf{q}_{k}=\left(\cos \frac{\theta_{k}}{2}, \sin \frac{\theta_{k}}{2} \hat{\mathbf{n}}_{k}\right)
\end{aligned}
$$

数Apply a temporal convolution, followed by a normalisation to unit length.

$$
\tilde{\mathbf{q}}_{k}=\sum_{l=-2}^{2} w_{l} \mathbf{q}_{k+l}, \quad \hat{\mathbf{q}}_{k}=\tilde{\mathbf{q}}_{k} / \sqrt{\tilde{q}_{1}^{2}+\tilde{q}_{2}^{2}+\tilde{q}_{3}^{2}+\tilde{q}_{4}^{2}}
$$

ROTATION SMOOTHING

管 If we have a sequence of rotation matrices

$$
\mathbf{R}_{k}, \quad \mathbf{R}_{k+1}, \mathbf{R}_{k+2}, \ldots
$$

We could apply a temporal convolution, followed by an orthogonalisation.

$$
\tilde{\mathbf{R}}_{k}=\sum_{l=-2}^{2} w_{l} \mathbf{R}_{k+l}
$$

$$
\mathbf{U D V}^{T}=\operatorname{svd}\left(\tilde{\mathbf{R}}_{k}\right), \quad \hat{\mathbf{R}}_{k}=\mathbf{U V}^{T}
$$

ROTATION SMOOTHING

䩚 Both versions can be shown to be 2nd order Taylor approximations of the geodesic distance． Gramkow，On Averaging Rotations，IJCV01

諩 Gramkow also compares both against ML． Both are very accurate（ $<5 \%$ relative error at 40deg）

龂 Quaternion variant is slightly closer to the ML solution，and also significantly faster．

ROTATION SMOOTHING

敖 Result (both methods indistinguishable)

SO（3）AND SE（3）

㽪 $\mathrm{SO}(3)$ is the group of 3D rotations（3dof）

$$
\mathrm{SO}(3)=\left\{\mathbf{R} \in \mathbb{R}^{3 \times 3} \mid \mathbf{R}^{T} \mathbf{R}=\mathbf{I}, \operatorname{det}(\mathbf{R})=1\right\}
$$

蛷 $\mathrm{SE}(3)$ is the group of Euclidean rigid body transformations（3D rotation +3 Dtranslation） （6dof）

$$
\mathrm{SE}(3)=\mathrm{SO}(3) \times \mathbb{R}^{3}
$$

数 For SE（3）we can similarly define an exponential map and a log map．

SO(3) AND SE(3)

綞 An element $\mathbf{G} \in \mathrm{SE}(3)$ has the matrix form

$$
\mathbf{G}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right] \quad \mathbf{R} \in \mathrm{SO}(3), \mathbf{t} \in \mathbb{R}^{3}
$$

粼It is the exponential of a twist

$$
\mathbf{G}=\exp (\hat{\xi} \theta) \quad \hat{\xi}=\left[\begin{array}{cc}
\operatorname{logm}(\mathbf{R}) & \mathbf{v} \\
0 & 0
\end{array}\right] \quad \theta \in \mathbb{R}
$$

SO（3）AND SE（3）

彞 An element $\mathbf{G} \in \mathrm{SE}(3)$ has the matrix form

$$
\mathbf{G}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right] \quad \mathbf{R} \in \mathrm{SO}(3), \mathbf{t} \in \mathbb{R}^{3}
$$

歯 It is the exponential of a twist

$$
\mathbf{G}=\exp (\hat{\xi} \theta) \quad \hat{\xi}=\left[\begin{array}{cc}
\operatorname{logm}(\mathbf{R}) & \mathbf{v} \\
0 & 0
\end{array}\right] \quad \theta \in \mathbb{R}
$$

恶 One could do smoothing and interpolation of rigid body motions using the geodesic distance on SE（3）（via the log map）．However．．．

SO(3) AND SE(3)

粼It turns out that physically meaningful motions do not follow geodesics in $\mathrm{SE}(3)$. Rather (if no external force):

1. The centre of mass moves linearly
2. Rotation happens about the centre of mass

数 Thus we should represent $\mathbf{R}(t)$ in object centered coordinates, and interpolate $\mathbf{R}(t)$ and $t(t)$ separately.

SO(3) AND SE(3)

糍 A very good treatment of $\mathrm{SO}(3)$ and $\mathrm{SE}(3)$ can be found in the book:
Murray et al. A Mathematical Introduction to Robotic Manipulation, CRC Press. 1994

蝶http://www.cds.caltech.edu/~murray/mlswiki/

DISCUSSION

䩮Discussion of the paper:
Ken Shoemake, Animating rotation with quaternion curved, ACM SIGGRAPH'85

FOR NEXT WEEK...

齿Forssén and Ringaby, Rectifying rolling shutter video from band-beld дevices, CVPR'10

