


STL provides a set of container classes which replicate data structures 
commonly used in programming.

 Implemented as class template

 Transparent memory management

 Member functions to access elements

 Common member functions (BUT DIFFERENT IN COMPLEXITY!!) 

 ...plus container adaptors.



 Set

 Multiset

 Map

 Multimap

 + unordered versions

 Array

 Vector

 Deque

 Forward_list

 List

 Stack

 Queue

 Priotity_queue



 Dinamically resizing arrays

 Contiguous (efficient access to elements, iterators)

 With size growth may require reallocation (logarithmic growth)

 Low memory efficiency (to limit the cost of reallocation)

 Quite efficient in insertion/removal of elements from the end

 Inefficient in insertion/removal of elements in the middle













 Same mechanic, but cannot be used to modify pointed content 
(even if content is not const!!)



 Mind the complexity!!



 Mind the complexity!!

 ARRAYS – fixed size sequences
(contiguous)

 DEQUE – double ended queues
(non-contiguous, expanding on both sides)

 FORWARD_LIST – singly linked list
(non-contiguous, O(1) insert/delete, O(n) access)

 LIST – doubly linked list
(like forward list, but can be browsed backwards)

 STACK – LIFO adaptor (defaults to deque)

 QUEUE – FIFO adaptor (defaults to deque)



 MAP – key/value associative container

 Typically implemented as binary trees

 Access values by map[key]

 Ordered on key (allows subset iterators)

 Unordered variant available

 MULTIMAP – 1 to N map

 SET – key=value

 Also binary trees

 Elements cannot be modified after insertion

 Unordered variant available (uses buckets)

 MULTISET – allows repetition of elements



www.liu.se


