


STL provides a set of container classes which replicate data structures 
commonly used in programming.

 Implemented as class template

 Transparent memory management

 Member functions to access elements

 Common member functions (BUT DIFFERENT IN COMPLEXITY!!) 

 ...plus container adaptors.



 Set

 Multiset

 Map

 Multimap

 + unordered versions

 Array

 Vector

 Deque

 Forward_list

 List

 Stack

 Queue

 Priotity_queue



 Dinamically resizing arrays

 Contiguous (efficient access to elements, iterators)

 With size growth may require reallocation (logarithmic growth)

 Low memory efficiency (to limit the cost of reallocation)

 Quite efficient in insertion/removal of elements from the end

 Inefficient in insertion/removal of elements in the middle













 Same mechanic, but cannot be used to modify pointed content 
(even if content is not const!!)



 Mind the complexity!!



 Mind the complexity!!

 ARRAYS – fixed size sequences
(contiguous)

 DEQUE – double ended queues
(non-contiguous, expanding on both sides)

 FORWARD_LIST – singly linked list
(non-contiguous, O(1) insert/delete, O(n) access)

 LIST – doubly linked list
(like forward list, but can be browsed backwards)

 STACK – LIFO adaptor (defaults to deque)

 QUEUE – FIFO adaptor (defaults to deque)



 MAP – key/value associative container

 Typically implemented as binary trees

 Access values by map[key]

 Ordered on key (allows subset iterators)

 Unordered variant available

 MULTIMAP – 1 to N map

 SET – key=value

 Also binary trees

 Elements cannot be modified after insertion

 Unordered variant available (uses buckets)

 MULTISET – allows repetition of elements



www.liu.se


