4

Optimization	
Computer Vision, Lecture 13	
Michael Felsberg	
I CHETCHER VISION LADOURALING	

Why Optimization?

• Computer vision algorithms are usually very complex

3

- Many parameters (dependent)
- Data dependencies (non-linear)
- Outliers and occlusions (noise)
- Classical approach
 - Trial and error (hackers' approach)
 - Encyclopedic knowledge (recipes)
 - Black-boxes + glue (hide problems)

Function		Output (codomain / target set)	
	Set	Continuous	Discrete
Input (domain	Continuous	Lecture 15	Lecture 15
of definition)	Discrete	Lecture 13	Lecture 13
		ex: stereo	ex: segmentering

Why Optimization?

- Establishing CV as scientific discipline
 - Derive algorithms from first-order principles (*optimal solution*)
 - Automatic choice of parameters (parameter free)
 - Systematic evaluation (benchmarks on standard datasets)

Optimization: howto

1. Choose a *scalar* measure (objective function) of success

5

Similar to

economics (money rules)

- From the benchmark
- Such that optimization becomes *feasible*
- Project functionality onto *one dimension*
- Approximate the world with a model
- Definition: allows to make predictions
- Purpose: makes optimization *feasible*
- Enables: *proper* choice of dataset

2.

Examples

- Relative pose (F) estimation:
 - Algebraic error (quadratic form)
 - Linear solution by SVD
 - Robustness by random sampling (RANSAC)
 - Result: F and inlier set
- Bundle adjustment
 - Geometric (reprojection) error (quadratic error)
 - Iterative solution using LM
 - Result: camera pose and 3D points

Optimization: howto

- 3. Apply suitable framework for model fitting
- This lecture
- Systematic part (1 & 2 are ad hoc)
- Current focus of research
- 4. Analyze resulting algorithm
- Find appropriate dataset
- Ignore runtime behavior (*highly non-optimized* Matlab code);-)

Taxonomy

- Objective function
 - Domain/manifold (algebraic error, geometric error, data dependent)
 - Robustness (explicitly in error norm, implicitly by Monte-Carlo approach)
- Model / simplification
 - Linearity (limited order), Markov property, regularization
- Algorithm
 - Approximative / analytic solutions (minimal problem)
 - Minimal solutions (over-determined)

Taxonomy: KLT

- Objective function
 - Domain/manifold: grey values / RGB / ...
 - Robustness: no (quadratic error, no regularization)

$$\varepsilon(\mathbf{d}) = \sum_{\mathcal{R}} w(\mathbf{x}) |f(\mathbf{x} - \mathbf{d}) - g(\mathbf{x})|^2$$

- Model / simplification
 - local linearization (Taylor expansion)

$$f(\mathbf{x} - \mathbf{d}) \approx f(\mathbf{x}) - \mathbf{d}^T \nabla f(\mathbf{x}) \qquad \nabla f = \left| \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \right|$$

Demo: KLT

14

<text><list-item><list-item><list-item><list-item> ⁵⁶ **Some Reconstruction** Assume that **f** is an unknown image that is observed through the linear operator **G**: **f**₀ = **Gf** + noise Example: blurring, linear projection Goal is to minimize the error **f**₀ - **Gf** Example: squared error Assume that we have a prior probability for the image: *P*(**f**) Example: we assume that the image should be smooth (small gradients)

	17
Gradient Operators	
• Taylor expansion of image gives $u(x + h, y) = u(x, y) + hu_x(x, y) + O(h^2)$	
$u(x - h, y) = u(x, y) - hu_x(x, y) + O(h^2)$	
• Finite left/right differences give	
$\partial_x^+ u = \frac{u(x+h,y) - u(x,y)}{h} + O(h^2)$	
$\partial_x^- u = \frac{u(x,y) - u(x-h,y)}{h} + O(h^2)$	
• Often needed: products of derivative operators	

Gradient Operators

• Squaring left (right) difference $(\partial_x^+)^2 u$ gives linear error in h

18

20

- Squaring central difference $\frac{u(x+h,y)-u(x-h,y)}{2h}$ gives quadratic error in *h*, but leaves out every second sample
- Multiplying left and right difference $\partial_x^+\partial_x^-u=\frac{u(x+h,y)-2u(x,y)+(x-h,y)}{h^2}=\Delta_x u$

gives quadratic error in *h* (usual discrete Laplace operator)

Robustness Data

- Alternative to RANSAC: use robust error norms
- Assume quadratic error: *influence* of change *f* to *f*+∂*f* to the estimate is linear (why?)
- Result on set of measurements: mean
- Assume absolute error: influence of change is constant (why?)
- Result on set of measurements: median
- In general: sub-linear influence leads to robust estimates, but *non-linear*

Smoothness • Quadratic smoothness term: influence linear with height of edge • Total variation smoothness (absolute value of gradient): influence constant • With quadratic measurement error: Rudin-Osher-Fatemi (ROF) model (Physica D, 1992) $\min_{u \in X} \frac{\|u - g\|^2}{2\lambda} + \sum_{1 \le i, j \le N} |(\nabla u)_{i,j}|$

Special Case: TV

• Minimizing
$$\min_{u \in X} \frac{\|u - g\|^2}{2\lambda} + \sum_{1 \le i, j \le N} |(\nabla u)_{i,j}|$$

• Stationary point

$$u-g-\lambda\operatorname{div}\left(rac{
abla u}{|
abla u|}
ight)=0$$

22

• Steepest descend

$$u^{(s+1)} = u^{(s)} - lpha \left(u^{(s)} - g - \lambda rac{u_{xx}u_y^2 - 2u_{xy}u_xu_y + u_{yy}u_x^2}{|
abla u|^3}
ight)$$

Demo: TV Inpainting

26

28 Dog Leg • For comparison: LM $\mathbf{r}(\boldsymbol{\beta} + \boldsymbol{\delta}) \approx \mathbf{r}(\boldsymbol{\beta}) + \mathbf{J}\boldsymbol{\delta}$ $(\mathbf{J}^T\mathbf{J} + \lambda \operatorname{diag}(\mathbf{J}^T\mathbf{J}))\boldsymbol{\delta} = \mathbf{J}^T\mathbf{r}(\boldsymbol{\beta})$ $J_{ij} = \frac{\partial r_i}{\partial \beta_j}$ $\beta_i \mapsto \beta_i + \delta_i$ • More efficient: replace damping factor λ with trust region radius Δ abbr. method properties $\delta = \mathbf{J}^T \mathbf{r}$ SDsteepest descent $\mathbf{J}^T \mathbf{J} \boldsymbol{\delta} = \mathbf{J}^T \mathbf{r}$ \mathbf{GN} Gauss-Newton Levenberg-Marguart $\mathbf{L}\mathbf{M}$ combines SD and GN by damping factor DL combines SD and GN by trust region radius Δ Dog Leg

Optical Flow

- Minimizing (lecture 4) $\varepsilon(\mathbf{v}_h) = \sum_{\mathbf{T}} w |[\nabla^T f f_t] \mathbf{v}_h|^2$
- Under the constraint $|\mathbf{v}_h|^2 = 1$
- Using Lagrangian multiplier leads to the minimization problem $\varepsilon_T(\mathbf{v}_h, \lambda) = \varepsilon(\mathbf{v}_h) + \lambda(1 - |\mathbf{v}_h|^2)$
- This is the total least squares formulation to determine the flow

Optical Flow

Local flow estimation

- Design guestion: w and R

normal direction

(underdetermined) - Infilling limited • Global flow instead

31

Optical Flow

• Solution is given by the eigenvalue problem

$$\left(\sum_{\mathcal{R}} w \begin{bmatrix} \nabla f \\ f_t \end{bmatrix} [\nabla^T f \ f_t] \right) \mathbf{v}_h = \lambda \mathbf{v}_h$$
$$\mathbf{T} \mathbf{v}_h = \lambda \mathbf{v}_h$$

- The matrix term **T** is the spatio-temporal structure tensor
- The eigenvector with the smallest eigenvalue is the solution (up to normalization of homogeneous element)

34 **Optical Flow** · Minimizing BCCE over the whole image with additional smoothness term $arepsilon(\mathbf{f}) = rac{1}{2}\int_{\Omega} (\langle \mathbf{f} | abla g angle + g_t)^2 + \lambda (| abla f_1|^2 + | abla f_2|^2) \, dx \, dy$ · Gives the iterative Horn & Schunck method (details will follow in the lecture on variational methods) $\mathbf{f}^{(s+1)} = \bar{\mathbf{f}}^{(s)} - \frac{1}{\lambda^2 + |\nabla q|^2} (\langle \bar{\mathbf{f}}^{(s)} |\nabla g \rangle + g_t) \nabla g$

Graph Algorithms

• All examples so far: vectors as solutions, i.e. finite set of (pseudo) continuous values

35

- Now: discrete (and binary) values
- Directly related to (labeled) graph-based optimization
- In probabilistic modeling (on regular grid): Markov random fields

Graphs

- Graph: algebraic structure G=(V, E)
- Nodes $V = \{v_1, v_2, ..., v_n\}$
- Arcs $E = \{e_1, e_2, \dots, e_m\}$, where e_k is incident to
- an unordered pair of nodes $\{v_i, v_j\}$
- an ordered pair of nodes (v_i, v_j) (directed graph)
- degree of node: number of incident arcs
- Weighted graph: costs assigned to nodes or arcs

Graph Cut

- n-link costs: large if two nodes belong to same segment, e.g. inverse gradient magnitude, Gauss, Potts model
- t-link costs:
- K for hard-linked seed points (K > maximum sum of data terms)
- o for the opposite seed point
- Submodularity $V(\alpha, \alpha) + V(\beta, \beta) \le V(\alpha, \beta) + V(\beta, \alpha)$

Examples / Discussion

• Binary problems solvable in polynomial time (albeit slow)

51

- Binary image restoration
- Bipartite matching (perfect assignment of graphs)
- N-ary problems (more than two terminals) are NP-hard and can only be approximated
 - Stereo (successful because many evaluation sets used discrete depths)

Michael Felsberg
michael.felsberg@liu.se
www.liu.se