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Variational Methods

Computer Vision, Lecture 15

Michael Felsberg

Computer Vision Laboratory

Department of Electrical Engineering

Optimization: Overview

Function
Output (codomain / 

target set)

Set Continuous Discrete

Input (domain 

of definition)

Continuous Lecture 15 Lecture 15

Discrete Lecture 13 Lecture 13

ex: diffusion
ex: level-set
segmentering
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Repetition: Vector Analysis

• Nabla operator

• On a scalar function

• On a vector field

• Laplace
operator 

• Green’s first identity
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Revisit: Diffusion

• Lecture on image enhancement:

• Consider scalar diffusivities

• Can diffusion be related to the iterations in an 
optimization process?
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Evolution Equation

• diffusion is an evolution process starting from the 
original image:
initial value problem (IVP)

• discrete steps: gradient descent steps (forward 
Newton scheme) on a 
boundary value problem (BVP)

• BVP is obtained by variational calculus from a 
continuous objective function
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Variational Methods

• Minimize the local integral of a Lagrange 
function 

• gives the Euler-Lagrange equation on Ω

• if we require
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Insight: EL Equation

• for all test functions g, the Gâteaux derivative

must vanish (scalar product in function space)

• Inserting the Lagrangian gives

• Note 

7

Insight: EL Equation

• use homogenity of Green's first identity

to rewrite

• thus

• and we obtain the necessary condition (for all x)
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Linear Regularization

• Minimizing

i.e. no data term 

• Gives the Euler-Lagrange equation 
(note: )

• Such that gradient descent gives
or continuous formulation

• Converges towards trivial solution
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Non-Linear Regularization

• Minimizing

special case:

• Gives the Euler-Lagrange equation

• Such that gradient descent gives
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Interpretation

• Diffusion is an evolution over "time" s

• Starts at the measured image (IVP)

• Converges towards DC signal

• Critical parameter 1: "stopping time"

• Critical parameter 2: 

• Several examples in the enhancement lecture

11

Beyond Diffusion

• In what follows: add data term to minimization 
problem

• Converges towards non-trivial solution

• IVP with standard forward Euler scheme
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Linear Restauration

• Minimizing

• Gives the Euler-Lagrange equation

• Such that gradient descent gives
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Non-Linear Restauration

• Minimizing

• Gives the Euler-Lagrange equation

• Such that gradient descent gives
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Special Case: TV/ROF

• Minimizing

• Gives the Euler-Lagrange equation

• Such that gradient descent gives
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Example (lecture 13)

• Paramters:    =0.0005,   =0.5, noise(0,0.001)
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Explicit vs Implicit

• All gradients so far are based on the previous 
estimate: the time discretization leads to an explicit 
scheme (least calculations, easiest)

• If the gradients are based on the new estimate, we 
obtain an implicit scheme (always stable, large time 
steps)

• If the gradients are based on both, we obtain the 
Crank-Nicolson scheme (always stable, small time 
steps)
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Interpretation

• Restauration is an IVP

• Uses the measured image as input in each iteration

• Converges towards non-trivial solution

• Critical parameter 1: "meta" parameter 

• Critical parameter 2: 
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The Data Term

• Data term can be used to describe the measurement 
model

• Leads to non-trivial iterations
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Deblurring

• Minimizing

• Gives the Euler-Lagrange equation

• Such that gradient descent gives
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Comments

• g: point spread function (PSF)

• g(-x): correlation operator / adjoint operator

• even symmetry PSF: self adjoint

• definition of adjoint operator

• Example from lecture 13
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Demonstration

22

Indirect Measurements

• Similar to target tracking, where observations might 
be different from states

• We observe image information but apply the 
variational framework to estimate other fields

• Two examples here: optical flow and segmentation 
(binary partition)
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Optical Flow

• Minimizing

• Gives the Euler-Lagrange equation (HS!)

• Laplacian is approximately 

BCCE

1 1 1 - 3 · 0 1 0 = 1 -2 1
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Optical Flow

• Plugging into the EL-equation gives

• Explicitly solving for f results in
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Optical Flow

• Iterating the solution

• Results in the Horn & Schunck iteration

• Significant improvement: use median instead of    !
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Demonstration
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Segmentation / Contours

• Segmentation function (level-set function) to be 
optimized

• Negative / positive in background / object region

• Contour is the zero-level
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Segmentation / Contours

• Chan-Vese energy minimized of level-set function ϕ

• H is the (regularized) Heaviside function

• f are weights computed from the image (e.g. squared 
deviation from certain greyscale)

• EL equation

• Problem: (regularized) delta function δ
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Segmentation / Contours

• Omitting delta-function

• Original solution remains solution

• Corresponds to minimizing

• Non-existence of minimizer (!)
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Segmentation / Contours

• Binary function instead of level-set function

• becomes Ising model (lecture 13)

• Hard to solve – use relaxation

– Binary function replaced by smooth approximation

– After optimization apply threshold

• Discrete optimization (lecture 13) 
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Examples

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/CREMERS2/
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Demonstration
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Over-Segmentation / Superpixels

• So far: attempt for semantic segmentation

• Alternative: over-segmentation based on stationarity
of image process

– MSER (lecture 8) 

– Superpixel algorithms –
clustering in 5D (x,y,R,G,B)

– Left: contour-relaxed
superpixels

– Right: SLIC
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Alternative Contour Methods

• Popular application:  

– Geodesic active contours

– Snakes

• Contour parametrized as

• Usually approximated as spline

• Option: Fourier descriptors
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Geodesic Active Contours

• Consider a curve moving in time

• let the curve develop according to the inward normal 
n and the curvature c
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Geodesic Active Contours

• Assume level set function
such that

• Negative inside and positive outside gives

• Plug in normal into evolution equation gives
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Geodesic Active Contours

• What remains is to re-write l.h.s. of

• Time derivative of  gives

• Such that

• Level-set equation
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Snake Function

• Energy function consists of typically 3 terms: 

– internal energy

– image forces

– external constraint forces
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Limitations

• Initialization close to solution

• Problems at concave regions

http://iacl.ece.jhu.edu/projects/gvf/
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GVF Snakes

• Gradient vector flow snakes

• GVF used as external force

• GVF field computation related to optical flow 
approach
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GVF Field

• Minimizing (GVF: f)

• Gives the Euler-Lagrange equations

• Such that gradient descent gives
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Examples

• No concavity problem

• No initialization problem

http://iacl.ece.jhu.edu/projects/gvf/
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