

Observations

- We need (in this case!) a minimum of 2 points to determine a line
- Given such a line l, we can determine how well any other point y fits the line l
- For example: distance between \boldsymbol{y} and \boldsymbol{l} • If we pick 2 *arbitrary* points from the dataset:
 - We can easily determine a line l

 - -1 is the correct line with some probability $p_{
 m LINE}$ $-p_{\text{LINE}}$ is related to the chance of picking only inliers
 - $-p_{\text{LINE}}$ is larger the fewer points that are used to determine l

Klas Nordberg

- In general: if l is the correct line there are more additional points that can be fitted to the line than if l is an incorrect line
- 31 March, 2017

- **Basic iteration**
- 1. Pick 2 random points

31 March, 2017

- 2. Fit a line l to the points
- 3. Determine how many other points in the dataset that can be fitted to l with some minimal error ϵ .
 - This forms the consensus set C
- 4. If C is sufficiently large, then the fitted line is probably OK. Keep it

Klas Nordberg

Basic algorithm

• Iterate K times

- 1. Pick 2 random points
- 2. Fit a line l to the points
- 3. Form the consensus set C, together with
- Number of points in C
- Matching error $\epsilon_{\rm C}$ of the set C relative to the line
- 4. If the consensus set is sufficiently large, then the fitted line is OK. In particular if N and/or $\epsilon_{\rm C}$ is better than the last line that was OK. Then keep it.
- For each iteration, we increase p_{SUCCESS} = the probability that the correct line has been determined
- We need to iterate sufficiently many time to raise p_{SUCCESS} to a useful level

Klas Nordberg

31 March, 2017

31 March, 2017

RANSAC This algorithm is called RANSAC - RANdom SAmple Consensus Published by Fischler & Bolles in 1981 "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography". Comm. of the ACM 24: 381–395. Several extensions / variations in the literature - Preemptive RANSAC - PROSAC - ...

Klas Nordberg

RANSAC

- An undeterministic algorithm
- · Finds a line estimated from only inliers with a probability p after K iterations
- 1 *p* = Pr(pick at least one outlier every time) $= (1 - w^2)^{\kappa}$

 $p = 1 - (1 - w^2)^{\kappa}$

RANSAC

- If w is known, we can choose the number of iterations, K, to make p reasonably high
- Example
 - *w* = 0.5 $p \approx 0.94$ for K = 10 $p \approx 0.99$ for K = 20

The correspondence problem

 If there are large baseline between the two images, tracking performance degrades

 Another approach is needed

Klas Nordberg

13

31 March, 2017

Duse RANSAC Pick 8 random points from S We don't know if they really correspond, but this can be tested: Use the 8-point algorithm to estimate F Use those well F matches each pair in S Collect those that fit well into the consensus set C If C is sufficiently large: F is OK: keep F and C Iterate K times

The odds are against us

- From the outset, the set of all tentative correspondences between two images can be VERY large (= $P_1 \times P_2$)
- VERY few of these are inliers: *w* is VERY small

TSBB15, Lecture 11

• Here *N* = 8

March 31, 2017

- This means that K must be VERY⁸ large in order to make $p_{\rm SUCCESS}$ close to 1
- Possible strategies for dealing with this problem?

4

19

Matching matrix

- The matching score can be based on similarity of visual appearance or other a priori knowledge about the scene (rather than geometric properties)
- For example
 - SIFT features [see previous lecture!]
 - MSER [see previous lecture!]
 - Color description
- Camera motions in relation to scene depth
- Tracking quality
- The resulting correspondences are referred to as — Tentative correspondences

TSBB15, lecture 11

- Putative correspondences

31 March 2017

Other ways to reduce K

- Try work with models for correspondences that require less than 8 pairs as a minimal case.
- Essential matrix E (N = 5)
- P3P (N=3)

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Initial assumptions

- A single camera is moving around in 3D space, taking pictures at multiple **distinct** positions of one and the same object/scene.
- These positions are not known with sufficient accuracy

TSBB15, Lecture 11

- The camera has **known internal calibration** parameters that are constant
- · Lens distortion effects are neglected
 - Or has been compensated for

March 31, 2017

- The pin-hole camera model valid

Initial assumptions (II)

- The images are ordered, for example, over a temporal parameter
 - Two consecutive images in the sequence have a smaller baseline than images that are far apart in the sequence
 - Adjacent images in the sequence can be expected to have a significant overlap. This means that many points are visible in both images.
- The camera path may or may not be closed

TSBB15, Lecture 11

March 31, 2017

26

