

Observations

- We need (in this case!) a minimum of 2 points to determine a line
- Given such a line l, we can determine how well any other point y fits the line l
- For example: distance between \mathbf{y} and l
- If we pick 2 arbitrary points from the dataset:
- We can easily determine a line 1
-1 is the correct line with some probability $p_{\text {LINE }}$
- $p_{\text {LINE }}$ is related to the chance of picking only inliers
- $p_{\text {LINE }}$ is larger the fewer points that are used to determine l
- In general: if 1 is the correct line there are more additional points that can be fitted to the line than if 1 is an incorrect line

31 March, 2017
Klas Nordberg

Basic iteration

1. Pick 2 random points
2. Fit a line 1 to the points
3. Determine how many other points in the dataset that can be fitted to 1 with some minimal error ϵ.

- This forms the consensus set C

4. If C is sufficiently large, then the fitted line is probably OK. Keep it

Basic algorithm

- Iterate K times

1. Pick 2 random points
2. Fit a line l to the points
3. Form the consensus set C, together with

- Number of points in C
- Matching error ϵ_{C} of the set C relative to the line

4. If the consensus set is sufficiently large, then the fitted line is OK. In particular if N and/or ϵ_{C} is better than the last line that was OK. Then keep it.

- For each iteration, we increase $p_{\text {SUCCESS }}=$ the probability that the correct line has been determined
- We need to iterate sufficiently many time to raise $p_{\text {SUCCESS }}$ to a useful level

31 March, 2017
Klas Nordberg

RANSAC

- An undeterministic algorithm
- Finds a line estimated from only inliers with a probability p after K iterations

$$
\begin{aligned}
1-p & =\operatorname{Pr}(\text { pick at least one outlier every time }) \\
& =\left(1-w^{2}\right)^{K} \\
p=1 & -\left(1-w^{2}\right)^{K}
\end{aligned}
$$

RANSAC

- This algorithm is called RANSAC
- RANdom SAmple Consensus
- Published by Fischler \& Bolles in 1981
- "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography". Comm. of the ACM 24: 381-395.
- Several extensions / variations in the literature
- Preemptive RANSAC
- PROSAC
- ...

31 March, 2017

RANSAC

- If w is known, we can choose the number of iterations, K, to make p reasonably high
- Example

$$
\begin{aligned}
& w=0.5 \\
& p \approx 0.94 \text { for } K=10 \\
& p \approx 0.99 \text { for } K=20
\end{aligned}
$$

The correspondence problem

- Given a set of interest points in two images, we want to determine correspondences, i.e., pairs of points that correspond to the same 3D point
- If there is a small relative baseline:
- Use tracking (Lucas-Kanade, etc)
- Track POIs in image 1 to their corresponding positions in image 2
- Can be applied to parts an image sequence
- A POI typically disappears after a while in a longer sequence - Track-retrack
- Remove all POIs that cannot be tracked forward and backward in time over several images

TSBB15, Lecture 11

A chicken and egg problem

We need corresponding

points to estimate \mathbf{F}

Point correspondences can be determined if we know F

The correspondence problem

- If there are large baseline between the two images, tracking performance degrades
- Another approach is needed

Chicken and egg revisited

- Let there be two views with P_{1} points in one view and P_{2} points in the other view
- We don't know which points in the first view that correspond to which points in the other view
- There is a set S of $P_{1} \times P_{2}$ possible correspondences, or tentative correspondences

Chicken and egg revisited

- The correct correspondences can be fitted to F, i.e., they satisfy the epipolar constraint for some F that only depends on which two views are used
- They are the inliers

- The incorrect correspondences are outliers

Klas Nordberg

Probabilities

- Let w be the fraction of inliers in S
- In each iteration we pick N points that are all inliers with probability w^{N} (approximately)
- The probability of not all N points are inliers is then given by $1-w^{N}$
- The probability of not all N points are inliers in K iterations is $\left(1-w^{N}\right)^{K}$
- The probability that in K iteration, at least once, all N points are inliers: $p=1-\left(1-w^{N}\right)^{K}$
- Solve for K :

$$
K=\frac{\log (1-p)}{\log \left(1-w^{N}\right)}
$$

March 31, 2017
TSBB15, Lecture 11

Use RANSAC

- Pick 8 random points from S
- We don't know if they really correspond, but this can be tested:

1. Use the 8-point algorithm to estimate \mathbf{F}
2. Check how well F matches each pair in S
3. Collect those that fit well into the consensus set C
4. If C is sufficiently large: \mathbf{F} is $\mathbf{O K}$: keep \mathbf{F} and C

- Iterate K times

The odds are against us

- From the outset, the set of all tentative correspondences between two images can be VERY large ($=P_{1} \times P_{2}$)
- VERY few of these are inliers: w is VERY small
- Here $N=8$
- This means that K must be VERY ${ }^{8}$ large in order to make $p_{\text {Success }}$ close to 1
- Possible strategies for dealing with this problem?

Matching matrix

- Given P_{1} points in image 1 and P_{2} points in image 2
- Form a $P_{1} \times P_{2}$ matching matrix
- Each entry (i, j) is a hypothetical correspondence between point i in image 1 and point j in image 2
- Set entry $(i, j)=$ a matching score between point i and point j based on visual appearance
- For each column or row: keep only the largest entry
- Reduces m while keeping m_{0} constant
- w increases $\Rightarrow r$ decreases for fixed p
- Run RANSAC on remaining tentative pairs

31 March 2017
TSBB15, lecture 11

Matching matrix

- The matching score can be based on similarity of visual appearance or other a priori knowledge about the scene (rather than geometric properties)
- For example
- SIFT features [see previous lecture!]
- MSER [see previous lecture!]
- Color description
- Camera motions in relation to scene depth
- Tracking quality
- The resulting correspondences are referred to as
- Tentative correspondences
- Putative correspondences

[^0]
Matching matrix

- Threshold the matching scores to remove highprobability outliers and to identify high-probability inliers (two thresholds!)
- Remove high-probability outliers
- High probability inliers means > 50\% probability
- From the original set D of possible correspondences, we have form two sets D_{1} and D_{0} such that
- D_{0} contains the high-probability inliers
- A.k.a. putative correspondences
- D_{1} contains the remaining correspondences that are not high-probability outliers
- $D_{0} \subset D_{1} \subset D$

Other ways to reduce K

- Try work with models for correspondences that require less than 8 pairs as a minimal case.
- Essential matrix $\mathbf{E}(N=5)$
- P3P ($N=3$)

Visual appearance and RANSAC

- Remove the low-probability correspondences before RANSAC
- Use the RANSAC algorithm for finding corresponding points based on the tentative correspondences
- Use only high-probability inliers $\left(D_{0}\right)$ in the initial selection of n points: $w>0.5$ \Rightarrow fewer iterations are needed
- Use medium and high-probability correspondences $\left(D_{1}\right)$ to form the consensus step \Rightarrow increases the probability of including correct correspondences in the consensus set

Project 2

Reconstruction of 3D object / scene from multiple views

Example: multiple views of a dinosaur

March 31, 2017
TSBB15, Lecture 11

Initial assumptions

- A single camera is moving around in 3D space, taking pictures at multiple distinct positions of one and the same object/scene.
- These positions are not known with sufficient accuracy
- The camera has known internal calibration parameters that are constant
- Lens distortion effects are neglected
- Or has been compensated for
- The pin-hole camera model valid

Initial assumptions (II)

- The images are ordered, for example, over a temporal parameter
- Two consecutive images in the sequence have a smaller baseline than images that are far apart in the sequence
- Adjacent images in the sequence can be expected to have a significant overlap. This means that many points are visible in both images.
- The camera path may or may not be closed

Project goal

- Based only on these images and the camera calibration:

Generate a 3D representation

 of the object/scene- The 3D representation can then be rendered from any viewpoint, even one not included in the data set

The 3D representation

- The object(s) in the scene is represented in terms of a set of 3D points
- Initially unordered (a point cloud)
- Using spatial relations in 3D space and in the 2D images the 3D points can be connected into one or more 2 D surfaces in 3 D spaces
- These surfaces can be texture mapped using the 2D images

Example: result

Results from 2011 project by Bertil Grelsson and Freddie Åström

TSBB15, Lecture 11

[^0]: 31 March 2017
 TSBB15, lecture 11

