Optimization

Computer Vision, Lecture 13

Per-Erik Forssén (slides by Michael Felsberg)
Computer Vision Laboratory Department of Electrical Engineering

Optimization: Overview

Function		Output (codomain / target set)	
	Set	Continuous	Discrete
Input (domain of definition)	Continuous	Lecture 15	Lecture 15
	Discrete	Lecture 13	Lecture 13

Why Optimization?

- Computer vision algorithms are usually very complex
- Many parameters (dependent)
- Data dependencies (non-linear)
- Outliers and occlusions (noise)
- Classical approach
- Trial and error (hackers' approach)
- Encyclopedic knowledge (recipes)
- Black-boxes + glue (hide problems)

Why Optimization?

- Establishing CV as scientific discipline
- Derive algorithms from first principles (optimal solution)
- Automatic choice of parameters (parameter free)
- Systematic evaluation (benchmarks on standard datasets)

Optimization: howto

1. Choose a scalar measure (objective function) of success

- From the benchmark
- Such that optimization becomes feasible
- Project functionality onto one dimension

2. Approximate the world with a model

- Definition: allows to make predictions
- Purpose: makes optimization feasible
- Enables: proper choice of dataset

Optimization: howto

3. Apply suitable framework for model fitting

- This lecture
- Systematic part (1\&2 are ad hoc)
- Current focus of research

4. Analyze resulting algorithm

- Find appropriate dataset
- Ignore runtime behavior (highly non-optimized Matlab code) ;-)

Examples

- Relative pose (F-matrix) estimation:
- Algebraic error (quadratic form)
- Linear solution by SVD
- Robustness by random sampling (RANSAC)
- Result: F and inlier set
- Bundle adjustment
- Geometric (reprojection) error (quadratic error)
- Iterative solution using LM
- Result: camera pose and 3D points

Taxonomy

- Objective function
- Domain/manifold (algebraic error, geometric error, data dependent)
- Robustness (explicitly in error norm, implicitly by Monte-Carlo approach)
- Model / simplification
- Linearity (limited order), Markov property, regularization
- Algorithm
- Approximate / analytic solutions (minimal problem)
- Minimal solutions (over-determined)

Taxonomy example: KLT

- Objective function
- Domain/manifold: grey values / RGB / ...
- Robustness: no (quadratic error, no regularization)

$$
\varepsilon(\mathbf{d})=\sum_{\mathbf{x} \in \mathcal{N}} w(\mathbf{x})|f(\mathbf{x}-\mathbf{d})-g(\mathbf{x})|^{2}
$$

- Model: Brightness constancy, image shift

$$
f(\mathbf{x}-\mathbf{d})=g(\mathbf{x}) \quad \forall \mathbf{x} \in \mathcal{N}
$$

Taxonomy: KLT

- Algorithm
- local linearization (Taylor expansion)
$f(\mathbf{x}-\mathbf{d}) \approx f(\mathbf{x})-\mathbf{d}^{T} \nabla f(\mathbf{x})$
- iterative solution of normal equations (Gauss-Newton)

$$
\mathbf{T} \mathbf{d}=\mathbf{r}
$$

- T: structure tensor (orientation tensor from outer product of gradients)

Taxonomy: KLT

- Algorithm
- local linearization (Taylor expansion) $\nabla f=\left[\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}\right]^{T}, ~ f(\mathbf{x}-\mathbf{d}) \approx f(\mathbf{x})-\mathbf{d}^{T} \nabla f(\mathbf{x})$
- iterative solution of normal equations (Gauss-Newton)

$$
\mathbf{T} \mathbf{d}=\mathbf{r}
$$

- T: structure tensor (orientation tensor from outer product of gradients)
- C.f. block matching : different algorithm, but cost function and model can be the same.

Regularization and MAP

- In Maximum a-posteriori (MAP), the objective (or loss) ε consists of a data term and a prior $\min _{\mathbf{d}} \varepsilon_{\text {data }}(f(\mathbf{d}), g)+\varepsilon_{\text {prior }}(\mathbf{d})$
$\Leftrightarrow \max _{\mathbf{d}} \exp \left(-\varepsilon_{\text {data }}(f(\mathbf{d}), g)\right) \exp \left(-\varepsilon_{\text {prior }}(\mathbf{d})\right)$
$\Leftrightarrow \max _{\mathbf{d}} P(g \mid \mathbf{d}) P(\mathbf{d})$
$\Leftrightarrow \max _{\mathbf{d}} P(\mathbf{d} \mid g)$
- A common prior is a smoothness constraint

MAP Example: KLT

- Assume a prior probability for the displacement : P (d) (e.g. from a motion model)
- In logarithmic domain, we now have two terms in the cost function:

$$
\varepsilon(\mathbf{d})=\sum_{\mathbf{x} \in \mathcal{N}} w(\mathbf{x})|f(\mathbf{x}-\mathbf{d})-g(\mathbf{x})|^{2}+\lambda\left\|\mathbf{d}-\mathbf{d}_{\text {pred }}\right\|^{2}
$$

- The standard KLT term
- A term that drags the solution towards the predicted displacement (cf. Kalman filtering)

Demo: KLT

Image Reconstruction

- Assume that \mathbf{f} is an unknown image that is observed through the linear operator $\mathbf{G}: \mathbf{f}_{0}=\mathbf{G f}+$ noise
- Example: blurring, linear projection
- Goal is to minimize the error \mathbf{f}_{0} - Gf
- Example: squared error
- Assume that we have a prior probability for the image: $P(\mathbf{f})$
- Example: we assume that the image should be smooth (small gradients)

Image Reconstruction

- Minimizing

$$
\varepsilon(\mathbf{f})=\frac{1}{2}\left(\left|\mathbf{G} \mathbf{f}-\mathbf{f}_{0}\right|^{2}+\lambda\left(\left|\mathbf{D}_{x} \mathbf{f}\right|^{2}+\left|\mathbf{D}_{y} \mathbf{f}\right|^{2}\right)\right)
$$

- Gives the normal equations

$$
\mathbf{G}^{T} \mathbf{G} \mathbf{f}-\mathbf{G}^{T} \mathbf{f}_{0}+\lambda\left(\mathbf{D}_{x}^{T} \mathbf{D}_{x} \mathbf{f}+\mathbf{D}_{y}^{T} \mathbf{D}_{y} \mathbf{f}\right)=0
$$

- Such that

$$
\mathbf{f}=\left(\mathbf{G}^{T} \mathbf{G}+\lambda\left(\mathbf{D}_{x}^{T} \mathbf{D}_{x}+\mathbf{D}_{y}^{T} \mathbf{D}_{y}\right)\right)^{-1} \mathbf{G}^{T} \mathbf{f}_{0}
$$

- Note that often u is used for the unknown image

Gradient Operators

- Taylor expansion of image gives

$$
\begin{aligned}
& u(x+h, y)=u(x, y)+h u_{x}(x, y)+O\left(h^{2}\right) \\
& u(x-h, y)=u(x, y)-h u_{x}(x, y)+O\left(h^{2}\right)
\end{aligned}
$$

- Finite left/right differences give

$$
\begin{aligned}
& \partial_{x}^{+} u=\frac{u(x+h, y)-u(x, y)}{h}+O\left(h^{2}\right) \\
& \partial_{x}^{-} u=\frac{u(x, y)-u(x-h, y)}{h}+O\left(h^{2}\right)
\end{aligned}
$$

- Often needed: products of derivative operators

Gradient Operators

- Squaring left (right) difference $\left(\partial_{x}^{+}\right)^{2} u$ gives linear error in h
- Squaring central difference $\frac{u(x+h, y)-u(x-h, y)}{2 h}$ gives quadratic error in h, but leaves out every second sample
- Multiplying left and right difference

$$
\partial_{x}^{+} \partial_{x}^{-} u=\frac{u(x+h, y)-2 u(x, y)+(x-h, y)}{h^{2}}=\Delta_{x} u
$$

gives quadratic error in h (usual discrete Laplace operator)

Demo: Image Reconstruction

- IRdemo.m

Robust error norms

- A complement to RANSAC
- Assume quadratic error: influence of change f to $f+\partial f$ to the estimate is linear (why?)
- Result on set of measurements: mean
- Assume absolute error: influence of change is constant (why?)
- Result on set of measurements: median
- In general: sub-linear influence leads to robust estimates, but non-linear

Smoothness

- Quadratic smoothness term: influence linear with height of edge
- Total variation smoothness (absolute value of gradient): influence constant
- With quadratic measurement error: Rudin-OsherFatemi (ROF) model (Physica D, 1992)

$$
\min _{u \in X} \frac{\|u-g\|^{2}}{2 \lambda}+\sum_{1 \leq i, j \leq N}\left|(\nabla u)_{i, j}\right|
$$

Total Variation (TV)

- Minimizing $\min _{u \in X} \frac{\|u-g\|^{2}}{2 \lambda}+\sum_{1 \leq i, j \leq N}\left|(\nabla u)_{i, j}\right|$
- Stationary point

$$
u-g-\lambda \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)=0
$$

- Steepest descent

$$
u^{(s+1)}=u^{(s)}-\alpha\left(u^{(s)}-g-\lambda \frac{u_{x x} u_{y}^{2}-2 u_{x y} u_{x} u_{y}+u_{y y} u_{x}^{2}}{|\nabla u|^{3}}\right)
$$

Efficient TV Algorithms

- In 1D: Chambolle's algorithm (JMIV, 2004)
- In 2D:
- Alternating direction method of multipliers (ADMM, variant of augmented Lagrangian): Split Bregman by Goldstein \& Osher (SIAM 2009)
- Based on threshold Landweber: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) by Beck \& Teboulle (SIAM 2009)
- Based on Lagrange multipliers: Primal Dual Algorithm by Chambolle \& Pock (JMIV 2011)

Demo: TV Image Denoising

TV Image Inpainting / Convex Optimization

- Note that many problems (including quadratic and TV) are convex optimization problems
- A good first approach is to map these problems to a standard solver, e.g. CVXPY by S. Diamond and S. Boyd
- Example: minimize the total variation of an image

$$
\sum_{1 \leq i, j \leq N}\left|(\nabla u)_{i, j}\right| \quad \begin{aligned}
& \text { under the constraint of a subset of } \\
& \text { known image values } u
\end{aligned}
$$

prob=Problem(Minimize(tv(X)),[X[known] == MG[known]]) opt_val = prob.solve()

Demo: TV Inpainting

Algorithmic Taxonomy

- Minimal problems (e.g. 5 point algorithm)
- Fully determined solution(s)
- Analytic solvers (polynomials, Gröbner bases)
- Numerical methods (Dogleg, Newton-Raphson)
- Overdetermined problems (e.g. OF,BA)
- Minimization problem
- Numerical solvers only
- Levenberg-Marquardt (interpolation GaussNewton and gradient descent / trust region)

Non-linear LS, Dog Leg

- For comparison: LM $\mathbf{r}(\beta+\boldsymbol{\delta}) \approx \mathbf{r}(\beta)+\mathbf{J} \boldsymbol{\delta}$

$$
\begin{array}{ll}
\left(\mathbf{J}^{T} \mathbf{J}+\lambda \operatorname{diag}\left(\mathbf{J}^{T} \mathbf{J}\right)\right) \boldsymbol{\delta}=\mathbf{J}^{T} \mathbf{r}(\boldsymbol{\beta}) \\
\beta_{j} \mapsto \beta_{j}+\delta_{j}
\end{array} \quad J_{i j}=\frac{\partial r_{i}}{\partial \beta_{j}}
$$

- More efficient: replace damping factor λ with trust region radius Δ

method	abbr.	properties
steepest descent	SD	$\boldsymbol{\delta}=\mathbf{J}^{T} \mathbf{r}$
Gauss-Newton	GN	$\mathbf{J}^{T} \mathbf{J} \boldsymbol{\delta}=\mathbf{J}^{T} \mathbf{r}$
Levenberg-Marquart	LM	combines SD and GN by damping factor
Dog Leg	DL	combines SD and GN by trust region radius Δ

Dog Leg

1. initialize $\Delta=1$
2. compute gain factor
3. if gain factor >0

$$
\begin{gathered}
\beta_{\text {new }}=\beta+\boldsymbol{\delta}_{\mathrm{SD}}+\alpha\left(\boldsymbol{\delta}_{\mathrm{GN}}-\boldsymbol{\delta}_{\mathrm{SD}}\right) \\
\left\|\boldsymbol{\delta}_{\mathrm{SD}}\right\| \leq \Delta, \quad 0 \leq \alpha \leq 1, \quad\left\|\boldsymbol{\delta}_{D L}\right\|=\Delta
\end{gathered}
$$

4. update gain factor
5. if update and residual nonzero goto 3

Optical Flow

- Minimizing (lecture 4) $\varepsilon\left(\mathbf{v}_{h}\right)=\sum_{\mathcal{R}} w\left|\left[\nabla^{T} f f_{t}\right] \mathbf{v}_{h}\right|^{2}$
- Under the constraint $\quad\left|\mathbf{v}_{h}\right|^{2}=1$
- Using Lagrangian multiplier leads to the minimization problem

$$
\varepsilon_{T}\left(\mathbf{v}_{h}, \lambda\right)=\varepsilon\left(\mathbf{v}_{h}\right)+\lambda\left(1-\left|\mathbf{v}_{h}\right|^{2}\right)
$$

- This is the total least squares formulation to determine the flow

Optical Flow

- Solution is given by the eigenvalue problem

$$
\begin{aligned}
\left(\sum_{\mathcal{R}} w\left[\begin{array}{c}
\nabla f \\
f_{t}
\end{array}\right]\left[\begin{array}{ll}
\nabla^{T} f & \left.f_{t}\right]
\end{array}\right) \mathbf{v}_{h}\right. & =\lambda \mathbf{v}_{h} \\
\mathbf{T v}_{h} & =\lambda \mathbf{v}_{h}
\end{aligned}
$$

- The matrix term \mathbf{T} is the spatio-temporal structure tensor
- The eigenvector with the smallest eigenvalue is the solution (up to normalization of homogeneous element)

Optical Flow

- Local flow estimation
- Design question: w and R
- Aperture problem: motion at linear structures can only be estimated in normal direction (underdetermined)
- Infilling limited
- Global flow instead

Optical Flow

- Minimizing BCCE over the whole image with additional smoothness term

$$
\varepsilon(\mathbf{f})=\frac{1}{2} \int_{\Omega}\left(\langle\mathbf{f} \mid \nabla g\rangle+g_{t}\right)^{2}+\lambda\left(\left|\nabla f_{1}\right|^{2}+\left|\nabla f_{2}\right|^{2}\right) d x d y
$$

- Gives the iterative Horn \& Schunck method (details will follow in the lecture on variational methods)

$$
\mathbf{f}^{(s+1)}=\overline{\mathbf{f}}^{(s)}-\frac{1}{\lambda^{2}+|\nabla g|^{2}}\left(\left\langle\overline{\mathbf{f}}^{(s)} \mid \nabla g\right\rangle+g_{t}\right) \nabla g
$$

Graph Algorithms

- All examples so far: vectors as solutions, i.e. finite set of (pseudo) continuous values
- Now: discrete (and binary) values
- Directly related to (labeled) graph-based optimization
- In probabilistic modeling (on regular grid): Markov random fields

Graphs

- Graph: algebraic structure $G=(V, E)$
- Nodes $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
- $\operatorname{Arcs} E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, where e_{k} is incident to
- an unordered pair of nodes $\left\{v_{i}, v_{j}\right\}$
- an ordered pair of nodes $\left(v_{i}, v_{j}\right)$ (directed graph)
- degree of node: number of incident arcs
- Weighted graph: costs assigned to nodes or arcs

Terminology

- Markov chain: memoryless process with r.v. X
- Markov random field (undirected graphical model): random variables (e.g. labels) over nodes with Markov property (conditional independence)
- Pairwise $X_{v_{i}} \Perp X_{v_{j}} \mid X_{V \backslash\left\{v_{i}, v_{j}\right\}}\left\{v_{i}, v_{j}\right\} \notin E$
- Local $\quad X_{v} \Perp X_{V \backslash(\{v\} \cup N(v))} \mid X_{N(v)}$
- Global $\quad X_{A} \Perp X_{B} \mid X_{S} \quad$ where every path from a node in A to node in B passes through S

Conditional Independence

$$
X_{v_{i}} \Perp X_{v_{j}} \mid X_{V \backslash\left\{v_{i}, v_{j}\right\}}\left\{v_{i}, v_{j}\right\} \notin E
$$

Conditional Independence

$$
X_{v} \Perp X_{V \backslash(\{v\} \cup N(v))} \mid X_{N(v)}
$$

Conditional Independence

$$
X_{A} \Perp X_{B} \mid X_{S}
$$

Terminology

- If joint density strictly positive: Gibbs RF
- Ising model (interacting magnetic spins), energy given as Hamiltonian function

$$
\varepsilon\left(X_{V}\right)=-\sum_{e_{k}=\left\{v_{i}, v_{j}\right\} \in E} J_{e_{k}} X_{v_{i}} X_{v_{j}}-\sum_{v_{j}} h_{v_{j}} X_{v_{j}}
$$

- General form

$$
\varepsilon\left(X_{V}\right)=\lambda \sum_{e_{k}=\left\{v_{i}, v_{j}\right\} \in E} V\left(X_{v_{i}}, X_{v_{j}}\right)+\sum_{v_{j}} D\left(X_{v_{j}}\right)
$$

- Configuration probability $\quad P\left(X_{V}\right) \propto \exp \left(-\varepsilon\left(X_{V}\right)\right)$

1D: Dynamic Programming

- Problem: find optimal path from source node s to sink note t
- Principle of Optimality: If the optimal path s-t goes through r, then both $s-r$ and $r-t$, are also optimal

(b)

1D: Dynamic Programming

- $C\left(v_{k}^{m+1}\right)$ is the new cost assigned to node v_{k}
- $g^{m}(i, k)$ is the partial path cost between nodes v_{i} and v_{k}

1D: Dynamic Programming

- $C\left(v_{k}^{m+1}\right)$ is the new cost assigned to node v_{k}
- $g^{m}(i, k)$ is the partial path cost between nodes v_{i} and v_{k}

$$
\begin{gathered}
C\left(v_{k}^{m+1}\right)=\min _{i}\left(C\left(v_{i}^{m}\right)+g^{m}(i, k)\right) \\
\min \left(C\left(v^{1}, v^{2}, \ldots, v^{M}\right)\right)=\min _{k=1, \ldots, n}\left(C\left(v_{k}^{M}\right)\right)
\end{gathered}
$$

Examples

- Shortest path computation (contours / intelligent scissors)
- 1D signal restoration (denoising)
- Tree labeling (pictorial structures)
- Matching of sequences (curves)

l.U

Gibbs Model /Markov Random Field

- Attempts to generalize dynamic programming to higher dimensions unsuccessful
- Minimize $C(f)=C_{\text {data }}(f)+C_{\text {smooth }}(f)$ using arc-weighted graphs $G_{\text {st }}=(V \cup\{s, t\}, E)$
- Two special terminal nodes, source s (e.g. object) and sink t (e.g. background) hard-linked with seed points

Graph Cut: Two types of arcs

- n-links: connecting neighboring pixels, cost given by the smoothness term V
- t-links: connecting pixels and terminals, cost given by the data term D

Graph Cut

- s - t cut is a set of arcs, such that the nodes and the remaining arcs form two disjoint graphs with points sets S and T
- cost of cut: sum of arc cost
- minimum s-t cut problem (dual: maximum flow problem)

Graph Cut

- n-link costs: large if two nodes belong to same segment, e.g. inverse gradient magnitude, Gauss, Potts model
- t-link costs:
- K for hard-linked seed points ($K>$ maximum sum of data terms)
- o for the opposite seed point
- Submodularity $V(\alpha, \alpha)+V(\beta, \beta) \leq V(\alpha, \beta)+V(\beta, \alpha)$

Demonstration

LINKÖPINGS
UNIVERSITET

Examples / Discussion

- Binary problems solvable in polynomial time (albeit slow)
- Binary image restoration
- Bipartite matching (perfect assignment of graphs)
- N -ary problems (more than two terminals) are NP-hard and can only be approximated (e.g. α-expansion move)
- Stereo application has quantization (it used to be popular because many evaluation sets used discrete depths)

Michael Felsberg
 michael.felsberg@liu.se

www.liu.se

