
Optimization
Computer	Vision,	Lecture	13	
Per-Erik	Forssén	(slides	by	Michael	Felsberg)
Computer	Vision	Laboratory
Department	of	Electrical	Engineering

Optimization:	Overview

Function Output	(codomain	/	
target	set)

Set Continuous Discrete

Input	(domain	
of	definition)

Continuous Lecture	15 Lecture	15

Discrete Lecture	13 Lecture	13

e.g.: stereo e.g.: segmentation

2

Why	Optimization?

• Computer vision algorithms are usually very complex
– Many parameters (dependent)
– Data dependencies (non-linear)
– Outliers and occlusions (noise)

• Classical approach
– Trial and error (hackers’ approach)
– Encyclopedic knowledge (recipes)
– Black-boxes + glue (hide problems)

3

Why	Optimization?

• Establishing CV as scientific discipline
– Derive algorithms from first principles (optimal

solution)
– Automatic choice of parameters (parameter free)
– Systematic evaluation (benchmarks on standard

datasets)

4

Optimization:	howto

1. Choose a scalar measure (objective function) of success
– From the benchmark
– Such that optimization becomes feasible
– Project functionality onto one dimension

2. Approximate the world with a model
– Definition: allows to make predictions
– Purpose: makes optimization feasible
– Enables: proper choice of dataset

Similar to
economics

(money rules)

5

Optimization:	howto

3. Apply suitable framework for model fitting
– This lecture
– Systematic part (1 & 2 are ad hoc)
– Current focus of research

4. Analyze resulting algorithm
– Find appropriate dataset
– Ignore runtime behavior (highly non-optimized

Matlab code) ;-)

6

Examples

• Relative pose (F-matrix) estimation:
– Algebraic error (quadratic form)
– Linear solution by SVD
– Robustness by random sampling (RANSAC)
– Result: F and inlier set

• Bundle adjustment
– Geometric (reprojection) error (quadratic error)
– Iterative solution using LM
– Result: camera pose and 3D points

7

Taxonomy
• Objective function

– Domain/manifold (algebraic error, geometric error,
data dependent)

– Robustness (explicitly in error norm, implicitly by
Monte-Carlo approach)

• Model / simplification
– Linearity (limited order), Markov property,

regularization
• Algorithm

– Approximate / analytic solutions (minimal problem)
– Minimal solutions (over-determined)

8

Taxonomy	example:	KLT

• Objective function
– Domain/manifold: grey values / RGB / …
– Robustness: no (quadratic error, no regularization)

• Model: Brightness constancy, image shift

9

"(d) =
X

x2N
w(x)|f(x� d)� g(x)|2

f(x� d) = g(x) 8x 2 N

Taxonomy:	KLT

• Algorithm
– local linearization (Taylor expansion)

– iterative solution of normal equations (Gauss-Newton)

– T: structure tensor (orientation tensor from outer
product of gradients)

Td = r

10

f(x� d) ⇡ f(x)� d

Trf(x)
rf =

@f

@x

@f

@y

�T

Taxonomy:	KLT

• Algorithm
– local linearization (Taylor expansion)

– iterative solution of normal equations (Gauss-Newton)

– T: structure tensor (orientation tensor from outer
product of gradients)

• C.f. block matching : different algorithm, but cost
function and model can be the same.

Td = r

11

f(x� d) ⇡ f(x)� d

Trf(x)
rf =

@f

@x

@f

@y

�T

Regularization	and	MAP

• In Maximum a-posteriori (MAP), the objective
(or loss) ε consists of a data term and a prior

• A common prior is a smoothness constraint

13

min

d
"
data

(f(d), g) + "
prior

(d)

, max

d
exp(�"

data

(f(d), g))exp(�"
prior

(d))

, max

d
P (g|d)P (d)

, max

d
P (d|g)

MAP	Example:	KLT

• Assume a prior probability for the displacement : P (d)
(e.g. from a motion model)

• In logarithmic domain, we now have two terms in the cost
function:

– The standard KLT term
– A term that drags the solution towards the predicted

displacement (cf. Kalman filtering)

16

"(d) =
X

x2N
w(x)|f(x� d)� g(x)|2 + �kd� dpredk2

Demo:	KLT

17

Image	Reconstruction

• Assume that f is an unknown image that is observed
through the linear operator G: f0 = Gf + noise

• Example: blurring, linear projection
• Goal is to minimize the error f0– Gf
• Example: squared error
• Assume that we have a prior probability for the

image: P (f)
• Example: we assume that the image should be

smooth (small gradients)

18

Image	Reconstruction

• Minimizing

• Gives the normal equations

• Such that

• Note that often u is used for the unknown image

19

Gradient	Operators

• Taylor expansion of image gives

• Finite left/right differences give

• Often needed: products of derivative operators

4.2. FINITE DIFFERENCE OPERATORS 23

@ : central di↵erence operator such that @ = (@+ + @�)/2

Given an image grid ⌦ ⇢ R2 where ⌦ = [M,N], and M is the size of the grid
in the first dimension (y-direction), and N is the size of the second dimension
(x-direction). Let h be the size of one pixel given in x- and y-direction. A third
order two dimensional Taylor series expansion in the x-direction and y-direction,
respectively, then reads

u(x+ h, y) = u(x, y) + hu
x

(x, y) +
h2

2
u
xx

(x, y) +O(h3) (4.6)

u(x� h, y) = u(x, y)� hu
x

(x, y) +
h2

2
u
xx

(x, y) +O(h3) (4.7)

u(x, y + h) = u(x, y) + hu
y

(x, y) +
h2

2
u
yy

(x, y) +O(h3) (4.8)

u(x, y � h) = u(x, y)� hu
y

(x, y) +
h2

2
u
yy

(x, y) +O(h3) . (4.9)

The Taylor expansion in the diagonal directions reads

u(x+ h, y + h) = u+ hu
x

+ hu
y

+
h2

2
(u

xx

+ 2u
xy

+ u
yy

) +O(h3) (4.10)

u(x+ h, y � h) = u+ hu
x

� hu
y

+
h2

2
(u

xx

� 2u
xy

+ u
yy

) +O(h3) (4.11)

u(x� h, y + h) = u� hu
x

+ hu
y

+
h2

2
(u

xx

� 2u
xy

+ u
yy

) +O(h3) (4.12)

u(x� h, y � h) = u� hu
x

� hu
y

+
h2

2
(u

xx

+ 2u
xy

+ u
yy

) +O(h3) , (4.13)

where the argument (x, y) has been dropped for increased clarity. From (4.6) and
(4.7) it is possible to derive the forward and backward finite di↵erence operators
@+ and @� as a second order approximations in the x-direction

@+
x

u =
u(x+ h, y)� u(x, y)

h
+O(h2) (4.14)

@�
x

u =
u(x, y)� u(x� h, y)

h
+O(h2) (4.15)

@
x

u =
u(x+ h, y)� u(x� h, y)

2h
+O(h2) , (4.16)

and by using (4.8) and (4.9) the corresponding operators in the y-direction is
obtained.

With the central di↵erences, the second order derivatives are computed by
summing (4.6) and (4.7), respectively (4.8) and (4.9)

u
xx

(x, y) =
u(x+ h, y)� 2u(x, y) + u(x� h, y)

h2
+O(h3)

u
yy

(x, y) =
u(x, y + h)� 2u(x, y) + u(x, y � h)

h2
+O(h3)

4.2. FINITE DIFFERENCE OPERATORS 23

@ : central di↵erence operator such that @ = (@+ + @�)/2

Given an image grid ⌦ ⇢ R2 where ⌦ = [M,N], and M is the size of the grid
in the first dimension (y-direction), and N is the size of the second dimension
(x-direction). Let h be the size of one pixel given in x- and y-direction. A third
order two dimensional Taylor series expansion in the x-direction and y-direction,
respectively, then reads

u(x+ h, y) = u(x, y) + hu
x

(x, y) +
h2

2
u
xx

(x, y) +O(h3) (4.6)

u(x� h, y) = u(x, y)� hu
x

(x, y) +
h2

2
u
xx

(x, y) +O(h3) (4.7)

u(x, y + h) = u(x, y) + hu
y

(x, y) +
h2

2
u
yy

(x, y) +O(h3) (4.8)

u(x, y � h) = u(x, y)� hu
y

(x, y) +
h2

2
u
yy

(x, y) +O(h3) . (4.9)

The Taylor expansion in the diagonal directions reads

u(x+ h, y + h) = u+ hu
x

+ hu
y

+
h2

2
(u

xx

+ 2u
xy

+ u
yy

) +O(h3) (4.10)

u(x+ h, y � h) = u+ hu
x

� hu
y

+
h2

2
(u

xx

� 2u
xy

+ u
yy

) +O(h3) (4.11)

u(x� h, y + h) = u� hu
x

+ hu
y

+
h2

2
(u

xx

� 2u
xy

+ u
yy

) +O(h3) (4.12)

u(x� h, y � h) = u� hu
x

� hu
y

+
h2

2
(u

xx

+ 2u
xy

+ u
yy

) +O(h3) , (4.13)

where the argument (x, y) has been dropped for increased clarity. From (4.6) and
(4.7) it is possible to derive the forward and backward finite di↵erence operators
@+ and @� as a second order approximations in the x-direction

@+
x

u =
u(x+ h, y)� u(x, y)

h
+O(h2) (4.14)

@�
x

u =
u(x, y)� u(x� h, y)

h
+O(h2) (4.15)

@
x

u =
u(x+ h, y)� u(x� h, y)

2h
+O(h2) , (4.16)

and by using (4.8) and (4.9) the corresponding operators in the y-direction is
obtained.

With the central di↵erences, the second order derivatives are computed by
summing (4.6) and (4.7), respectively (4.8) and (4.9)

u
xx

(x, y) =
u(x+ h, y)� 2u(x, y) + u(x� h, y)

h2
+O(h3)

u
yy

(x, y) =
u(x, y + h)� 2u(x, y) + u(x, y � h)

h2
+O(h3)

4.2. FINITE DIFFERENCE OPERATORS 23

@ : central di↵erence operator such that @ = (@+ + @�)/2

Given an image grid ⌦ ⇢ R2 where ⌦ = [M,N], and M is the size of the grid
in the first dimension (y-direction), and N is the size of the second dimension
(x-direction). Let h be the size of one pixel given in x- and y-direction. A third
order two dimensional Taylor series expansion in the x-direction and y-direction,
respectively, then reads

u(x+ h, y) = u(x, y) + hu
x

(x, y) +
h2

2
u
xx

(x, y) +O(h3) (4.6)

u(x� h, y) = u(x, y)� hu
x

(x, y) +
h2

2
u
xx

(x, y) +O(h3) (4.7)

u(x, y + h) = u(x, y) + hu
y

(x, y) +
h2

2
u
yy

(x, y) +O(h3) (4.8)

u(x, y � h) = u(x, y)� hu
y

(x, y) +
h2

2
u
yy

(x, y) +O(h3) . (4.9)

The Taylor expansion in the diagonal directions reads

u(x+ h, y + h) = u+ hu
x

+ hu
y

+
h2

2
(u

xx

+ 2u
xy

+ u
yy

) +O(h3) (4.10)

u(x+ h, y � h) = u+ hu
x

� hu
y

+
h2

2
(u

xx

� 2u
xy

+ u
yy

) +O(h3) (4.11)

u(x� h, y + h) = u� hu
x

+ hu
y

+
h2

2
(u

xx

� 2u
xy

+ u
yy

) +O(h3) (4.12)

u(x� h, y � h) = u� hu
x

� hu
y

+
h2

2
(u

xx

+ 2u
xy

+ u
yy

) +O(h3) , (4.13)

where the argument (x, y) has been dropped for increased clarity. From (4.6) and
(4.7) it is possible to derive the forward and backward finite di↵erence operators
@+ and @� as a second order approximations in the x-direction

@+
x

u =
u(x+ h, y)� u(x, y)

h
+O(h2) (4.14)

@�
x

u =
u(x, y)� u(x� h, y)

h
+O(h2) (4.15)

@
x

u =
u(x+ h, y)� u(x� h, y)

2h
+O(h2) , (4.16)

and by using (4.8) and (4.9) the corresponding operators in the y-direction is
obtained.

With the central di↵erences, the second order derivatives are computed by
summing (4.6) and (4.7), respectively (4.8) and (4.9)

u
xx

(x, y) =
u(x+ h, y)� 2u(x, y) + u(x� h, y)

h2
+O(h3)

u
yy

(x, y) =
u(x, y + h)� 2u(x, y) + u(x, y � h)

h2
+O(h3)

20

Gradient	Operators

• Squaring left (right) difference gives linear
error in h

• Squaring central difference
gives quadratic error in h,
but leaves out every second sample

• Multiplying left and right difference

gives quadratic error in h (usual discrete Laplace
operator)

21

Demo:	Image	Reconstruction

• IRdemo.m

22

Robust	error	norms

• A complement to RANSAC
• Assume quadratic error: influence of change f to f+∂f

to the estimate is linear (why?)
• Result on set of measurements: mean
• Assume absolute error: influence of change is

constant (why?)
• Result on set of measurements: median
• In general: sub-linear influence leads to robust

estimates, but non-linear

23

Smoothness

• Quadratic smoothness term: influence linear with
height of edge

• Total variation smoothness (absolute value of
gradient): influence constant

• With quadratic measurement error: Rudin-Osher-
Fatemi (ROF) model (Physica D, 1992)

90 Chambolle

(see for instance [12]). It is well known that J , de-
fined by (2), is finite if and only if the distributional
derivative Du of u is a finite Radon measure in !, in
which case we have J (u) = |Du|(!). If u has a gra-
dient ∇u ∈ L1(!; R2), then J (u) =

∫
!

|∇u(x)| dx .
We will work mostly, in this note, in the discrete
setting. Let us however make the observation that if
some step-size (or pixel size) h ∼ 1/N is introduced
in the discrete definition of J (defining a new func-
tional Jh equal to h times the expression in (1)), one
can show that as h → 0 (and the number of pix-
els N goes to infinity), Jh “"–converges” (see for
instance [1]) to the continuous J (defined by (2) on
! = (0, 1)× (0, 1)). This means that the minimizers of
the problems we are going to consider approximate cor-
rectly, if the pixel size is very small, minimizers of sim-
ilar problems defined in the continuous setting with the
functional (2).

Being J one–homogeneous (that is, J (λu) = λJ (u)
for every u and λ > 0), it is a standard fact in convex
analysis (we refer to [11] for a quite complete introduc-
tion to convex analysis, and to [14] for a monograph
on convex optimization problems) that the Legendre–
Fenchel transform

J ∗(v) = sup
u

⟨u, v⟩X − J (u)

(with ⟨u, v⟩X =
∑

i, j ui, jvi, j)1 is the “characteristic
function” of a closed convex set K :

J ∗(v) = χK (v) =
{

0 if v ∈ K

+ ∞ otherwise.
(3)

Since J ∗∗ = J , we recover

J (u) = sup
v∈K

⟨u, v⟩X . (4)

In the continuous setting, one readily sees from
definition (2) that K is the closure of the set

{
div ξ : ξ ∈ C1

c (!; R2) , |ξ (x)| ≤ 1 ∀x ∈ !
}
.

Let us now find a similar characterization in the dis-
crete setting. In Y , we use the Euclidean scalar product,
defined in the standard way by

⟨p, q⟩Y =
∑

1≤i, j≤N

(
p1

i, j q
1
i, j + p2

i, j q
2
i, j

)
,

for every p = (p1, p2), q = (q1, q2) ∈ Y . Then, for
every u,

J (u) = sup
p

⟨p, ∇u⟩Y (5)

where the sup is taken on all p ∈ Y such that |pi, j | ≤
1 for every i, j . We introduce a discrete divergence
div : Y → X defined, by analogy with the continuous
setting, by div = −∇∗ (∇∗ is the adjoint of ∇). That is,
for every p ∈ Y and u ∈ X , ⟨−div p, u⟩X = ⟨p, ∇u⟩Y .
One checks easily that div is given by

(div p)i j =

⎧
⎪⎨

⎪⎩

p1
i, j − p1

i−1, j if 1 < i < N ,

p1
i, j if i = 1,

−p1
i−1, j if i = N ,

+

⎧
⎪⎨

⎪⎩

p2
i, j − p2

i, j−1 if 1 < j < N ,

p2
i, j if j = 1,

−p2
i, j−1 if j = N ,

for every p = (p1, p2) ∈ Y . From (5) and the definition
of the operator div, one immediately deduce (4), with
K given by

{div p : p ∈ Y , |pi, j | ≤ 1 ∀ i, j = 1, . . . , N }.

3. The Algorithm

We propose an algorithm for solving

min
u∈X

∥u − g∥
2λ

2

+ J (u), (6)

given g ∈ X and λ > 0. ∥·∥ is the Euclidean norm in
X , given by ∥u∥2 = ⟨u, u⟩X .

The Euler equation for (6) is

u − g + λ∂ J (u) ∋ 0.

Here, ∂ J is the “sub-differential” of J , defined by
w ∈ ∂ J (u) ⇔ J (v) ≥ J (u) + ⟨w, v − u⟩X for every
v (see [11, 14]). The Euler equation may be rewrit-
ten (g − u)/λ ∈ ∂ J (u), which is equivalent to u ∈
∂ J ∗((g − u)/λ) (cf [14, Vol. I, Prop. 6.1.2]). Writing
this as

g
λ

∈ g − u
λ

+ 1
λ

∂ J ∗
(

g − u
λ

)
,

Journal of Mathematical Imaging and Vision 20: 89–97, 2004
c⃝ 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Algorithm for Total Variation Minimization and Applications

ANTONIN CHAMBOLLE
CEREMADE–CNRS UMR 7534, Université de Paris-Dauphine, 75775 Paris Cedex 16, France

antonin@ceremade.dauphine.fr

Abstract. We propose an algorithm for minimizing the total variation of an image, and provide a proof of
convergence. We show applications to image denoising, zooming, and the computation of the mean curvature
motion of interfaces.

Keywords: total variation, image reconstruction, denoising, zooming, mean curvature motion

1. Introduction

The total variation has been introduced in Com-
puter Vision first by Rudin, Osher and Fatemi [17],
as a regularizing criterion for solving inverse prob-
lems. It has proved to be quite efficient for regular-
izing images without smoothing the boundaries of the
objects.

In this paper we propose a algorithm for minimizing
the total variation, that we claim to be quite fast. It
is based on a dual formulation, and is related to the
works of Chan, Golub, and Mulet [6] or of Carter [3].
However, our presentation is slightly different and we
can provide a proof of convergence. We then show how
our algorithm can be applied to two standard inverse
problems in image processing, that are image denoising
and zooming. We refer to [5, 8–10, 15, 19] for other
algorithms to solve the same problem (as well as to
the other total variation—related papers quoted in this
note).

2. Notations and Preliminary Remarks

Let us fix our main notations. To simplify, our images
will be 2-dimensional matrices of size N × N (adapta-
tion to other cases or higher dimension is not difficult).
We denote by X the Euclidean space RN×N . To define
the discrete total variation, we introduce a discrete (lin-
ear) gradient operator. If u ∈ X , The gradient ∇u is a

vector in Y = X × X given by

(∇u)i, j =
(
(∇u)1

i, j , (∇u)2
i, j

)

with

(∇u)1
i, j =

{
ui+1, j − ui, j if i < N ,

0 if i = N ,

(∇u)2
i, j =

{
ui, j+1 − ui, j if j < N ,

0 if j = N ,

for i, j = 1, . . . , N . Other choices of discretization are
of course possible for the gradient, as long as it is a
linear operator. Our choice seems to offer a good com-
promise between isotropy and stability.

Then, the total variation of u is defined by

J (u) =
∑

1≤i, j≤N

|(∇u)i, j |, (1)

with |y| :=
√

y2
1 + y2

2 for every y = (y1, y2) ∈ R2.
Let us observe here that this functional J is a dis-

cretization of the standard total variation, defined in the
continuous setting for a function u ∈ L1(!) (! open
subset of R2) by

J (u) = sup
{ ∫

!

u(x) div ξ (x) dx :

ξ ∈ C1
c (!; R2), |ξ (x)| ≤ 1 ∀x ∈ !

}
(2)

24

Total Variation (TV)

• Minimizing

• Stationary point

• Steepest descent

90 Chambolle

(see for instance [12]). It is well known that J , de-
fined by (2), is finite if and only if the distributional
derivative Du of u is a finite Radon measure in !, in
which case we have J (u) = |Du|(!). If u has a gra-
dient ∇u ∈ L1(!; R2), then J (u) =

∫
!

|∇u(x)| dx .
We will work mostly, in this note, in the discrete
setting. Let us however make the observation that if
some step-size (or pixel size) h ∼ 1/N is introduced
in the discrete definition of J (defining a new func-
tional Jh equal to h times the expression in (1)), one
can show that as h → 0 (and the number of pix-
els N goes to infinity), Jh “"–converges” (see for
instance [1]) to the continuous J (defined by (2) on
! = (0, 1)× (0, 1)). This means that the minimizers of
the problems we are going to consider approximate cor-
rectly, if the pixel size is very small, minimizers of sim-
ilar problems defined in the continuous setting with the
functional (2).

Being J one–homogeneous (that is, J (λu) = λJ (u)
for every u and λ > 0), it is a standard fact in convex
analysis (we refer to [11] for a quite complete introduc-
tion to convex analysis, and to [14] for a monograph
on convex optimization problems) that the Legendre–
Fenchel transform

J ∗(v) = sup
u

⟨u, v⟩X − J (u)

(with ⟨u, v⟩X =
∑

i, j ui, jvi, j)1 is the “characteristic
function” of a closed convex set K :

J ∗(v) = χK (v) =
{

0 if v ∈ K

+ ∞ otherwise.
(3)

Since J ∗∗ = J , we recover

J (u) = sup
v∈K

⟨u, v⟩X . (4)

In the continuous setting, one readily sees from
definition (2) that K is the closure of the set

{
div ξ : ξ ∈ C1

c (!; R2) , |ξ (x)| ≤ 1 ∀x ∈ !
}
.

Let us now find a similar characterization in the dis-
crete setting. In Y , we use the Euclidean scalar product,
defined in the standard way by

⟨p, q⟩Y =
∑

1≤i, j≤N

(
p1

i, j q
1
i, j + p2

i, j q
2
i, j

)
,

for every p = (p1, p2), q = (q1, q2) ∈ Y . Then, for
every u,

J (u) = sup
p

⟨p, ∇u⟩Y (5)

where the sup is taken on all p ∈ Y such that |pi, j | ≤
1 for every i, j . We introduce a discrete divergence
div : Y → X defined, by analogy with the continuous
setting, by div = −∇∗ (∇∗ is the adjoint of ∇). That is,
for every p ∈ Y and u ∈ X , ⟨−div p, u⟩X = ⟨p, ∇u⟩Y .
One checks easily that div is given by

(div p)i j =

⎧
⎪⎨

⎪⎩

p1
i, j − p1

i−1, j if 1 < i < N ,

p1
i, j if i = 1,

−p1
i−1, j if i = N ,

+

⎧
⎪⎨

⎪⎩

p2
i, j − p2

i, j−1 if 1 < j < N ,

p2
i, j if j = 1,

−p2
i, j−1 if j = N ,

for every p = (p1, p2) ∈ Y . From (5) and the definition
of the operator div, one immediately deduce (4), with
K given by

{div p : p ∈ Y , |pi, j | ≤ 1 ∀ i, j = 1, . . . , N }.

3. The Algorithm

We propose an algorithm for solving

min
u∈X

∥u − g∥
2λ

2

+ J (u), (6)

given g ∈ X and λ > 0. ∥·∥ is the Euclidean norm in
X , given by ∥u∥2 = ⟨u, u⟩X .

The Euler equation for (6) is

u − g + λ∂ J (u) ∋ 0.

Here, ∂ J is the “sub-differential” of J , defined by
w ∈ ∂ J (u) ⇔ J (v) ≥ J (u) + ⟨w, v − u⟩X for every
v (see [11, 14]). The Euler equation may be rewrit-
ten (g − u)/λ ∈ ∂ J (u), which is equivalent to u ∈
∂ J ∗((g − u)/λ) (cf [14, Vol. I, Prop. 6.1.2]). Writing
this as

g
λ

∈ g − u
λ

+ 1
λ

∂ J ∗
(

g − u
λ

)
,

Journal of Mathematical Imaging and Vision 20: 89–97, 2004
c⃝ 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Algorithm for Total Variation Minimization and Applications

ANTONIN CHAMBOLLE
CEREMADE–CNRS UMR 7534, Université de Paris-Dauphine, 75775 Paris Cedex 16, France

antonin@ceremade.dauphine.fr

Abstract. We propose an algorithm for minimizing the total variation of an image, and provide a proof of
convergence. We show applications to image denoising, zooming, and the computation of the mean curvature
motion of interfaces.

Keywords: total variation, image reconstruction, denoising, zooming, mean curvature motion

1. Introduction

The total variation has been introduced in Com-
puter Vision first by Rudin, Osher and Fatemi [17],
as a regularizing criterion for solving inverse prob-
lems. It has proved to be quite efficient for regular-
izing images without smoothing the boundaries of the
objects.

In this paper we propose a algorithm for minimizing
the total variation, that we claim to be quite fast. It
is based on a dual formulation, and is related to the
works of Chan, Golub, and Mulet [6] or of Carter [3].
However, our presentation is slightly different and we
can provide a proof of convergence. We then show how
our algorithm can be applied to two standard inverse
problems in image processing, that are image denoising
and zooming. We refer to [5, 8–10, 15, 19] for other
algorithms to solve the same problem (as well as to
the other total variation—related papers quoted in this
note).

2. Notations and Preliminary Remarks

Let us fix our main notations. To simplify, our images
will be 2-dimensional matrices of size N × N (adapta-
tion to other cases or higher dimension is not difficult).
We denote by X the Euclidean space RN×N . To define
the discrete total variation, we introduce a discrete (lin-
ear) gradient operator. If u ∈ X , The gradient ∇u is a

vector in Y = X × X given by

(∇u)i, j =
(
(∇u)1

i, j , (∇u)2
i, j

)

with

(∇u)1
i, j =

{
ui+1, j − ui, j if i < N ,

0 if i = N ,

(∇u)2
i, j =

{
ui, j+1 − ui, j if j < N ,

0 if j = N ,

for i, j = 1, . . . , N . Other choices of discretization are
of course possible for the gradient, as long as it is a
linear operator. Our choice seems to offer a good com-
promise between isotropy and stability.

Then, the total variation of u is defined by

J (u) =
∑

1≤i, j≤N

|(∇u)i, j |, (1)

with |y| :=
√

y2
1 + y2

2 for every y = (y1, y2) ∈ R2.
Let us observe here that this functional J is a dis-

cretization of the standard total variation, defined in the
continuous setting for a function u ∈ L1(!) (! open
subset of R2) by

J (u) = sup
{ ∫

!

u(x) div ξ (x) dx :

ξ ∈ C1
c (!; R2), |ξ (x)| ≤ 1 ∀x ∈ !

}
(2)

25

Efficient TV Algorithms

• In 1D: Chambolle’s algorithm (JMIV, 2004)
• In 2D:

– Alternating direction method of multipliers
(ADMM, variant of augmented Lagrangian): Split
Bregman by Goldstein & Osher (SIAM 2009)

– Based on threshold Landweber: Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) by
Beck & Teboulle (SIAM 2009)

– Based on Lagrange multipliers: Primal Dual
Algorithm by Chambolle & Pock (JMIV 2011)

26

Demo:	TV	Image	Denoising

27

TV	Image	Inpainting /	Convex	Optimization

• Note that many problems (including quadratic and TV)
are convex optimization problems

• A good first approach is to map these problems to a
standard solver, e.g. CVXPY by S. Diamond and S. Boyd

• Example: minimize the total variation of an image

under the constraint of a subset of
known image values u

prob=Problem(Minimize(tv(X)),[X[known] == MG[known]])
opt_val = prob.solve()

Journal of Mathematical Imaging and Vision 20: 89–97, 2004
c⃝ 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Algorithm for Total Variation Minimization and Applications

ANTONIN CHAMBOLLE
CEREMADE–CNRS UMR 7534, Université de Paris-Dauphine, 75775 Paris Cedex 16, France

antonin@ceremade.dauphine.fr

Abstract. We propose an algorithm for minimizing the total variation of an image, and provide a proof of
convergence. We show applications to image denoising, zooming, and the computation of the mean curvature
motion of interfaces.

Keywords: total variation, image reconstruction, denoising, zooming, mean curvature motion

1. Introduction

The total variation has been introduced in Com-
puter Vision first by Rudin, Osher and Fatemi [17],
as a regularizing criterion for solving inverse prob-
lems. It has proved to be quite efficient for regular-
izing images without smoothing the boundaries of the
objects.

In this paper we propose a algorithm for minimizing
the total variation, that we claim to be quite fast. It
is based on a dual formulation, and is related to the
works of Chan, Golub, and Mulet [6] or of Carter [3].
However, our presentation is slightly different and we
can provide a proof of convergence. We then show how
our algorithm can be applied to two standard inverse
problems in image processing, that are image denoising
and zooming. We refer to [5, 8–10, 15, 19] for other
algorithms to solve the same problem (as well as to
the other total variation—related papers quoted in this
note).

2. Notations and Preliminary Remarks

Let us fix our main notations. To simplify, our images
will be 2-dimensional matrices of size N × N (adapta-
tion to other cases or higher dimension is not difficult).
We denote by X the Euclidean space RN×N . To define
the discrete total variation, we introduce a discrete (lin-
ear) gradient operator. If u ∈ X , The gradient ∇u is a

vector in Y = X × X given by

(∇u)i, j =
(
(∇u)1

i, j , (∇u)2
i, j

)

with

(∇u)1
i, j =

{
ui+1, j − ui, j if i < N ,

0 if i = N ,

(∇u)2
i, j =

{
ui, j+1 − ui, j if j < N ,

0 if j = N ,

for i, j = 1, . . . , N . Other choices of discretization are
of course possible for the gradient, as long as it is a
linear operator. Our choice seems to offer a good com-
promise between isotropy and stability.

Then, the total variation of u is defined by

J (u) =
∑

1≤i, j≤N

|(∇u)i, j |, (1)

with |y| :=
√

y2
1 + y2

2 for every y = (y1, y2) ∈ R2.
Let us observe here that this functional J is a dis-

cretization of the standard total variation, defined in the
continuous setting for a function u ∈ L1(!) (! open
subset of R2) by

J (u) = sup
{ ∫

!

u(x) div ξ (x) dx :

ξ ∈ C1
c (!; R2), |ξ (x)| ≤ 1 ∀x ∈ !

}
(2)

28

Demo:	TV	Inpainting

29

Algorithmic	Taxonomy

• Minimal problems (e.g. 5 point algorithm)
– Fully determined solution(s)
– Analytic solvers (polynomials, Gröbner bases)
– Numerical methods (Dogleg, Newton-Raphson)

• Overdetermined problems (e.g. OF,BA)
– Minimization problem
– Numerical solvers only
– Levenberg-Marquardt (interpolation Gauss-

Newton and gradient descent / trust region)

30

Non-linear	LS,	Dog	Leg

• For comparison: LM

• More efficient: replace damping factor λ with trust
region radius Δ

�j 7! �j + �j

(JT
J+ �diag(JT

J))��� = J

T [y � f(x,���)]

31

Dog	Leg

1. initialize Δ =1
2. compute gain factor

3. if gain factor >0

4. update gain factor
5. if update and residual nonzero goto 3

32

Optical Flow

• Minimizing (lecture 4)

• Under the constraint

• Using Lagrangian multiplier leads to the minimization

problem

• This is the total least squares formulation to

determine the flow

"(vh) =
X

R
w|[rT f ft]vh|2

|vh|2 = 1

"T (vh,�) = "(vh) + �(1� |vh|2)

34

Optical Flow

• Solution is given by the eigenvalue problem

• The matrix term T is the spatio-temporal structure

tensor

• The eigenvector with the smallest eigenvalue is the

solution (up to normalization of homogeneous

element)

X

R
w

rf
ft

�
[rT f ft]

!
vh = �vh

Tvh = �vh

35

Optical Flow

• Local flow estimation

– Design question:

w and R

– Aperture problem: motion

at linear structures can

only be estimated in

normal direction

(underdetermined)

– Infilling limited

• Global flow instead

36

Optical Flow

• Minimizing BCCE over the whole image

with additional smoothness term

• Gives the iterative Horn & Schunck method (details

will follow in the lecture on variational methods)

f (s+1) = f̄ (s) � 1

�2 + |rg|2 (hf̄
(s)|rgi+ gt)rg

37

Graph	Algorithms

• All examples so far: vectors as solutions, i.e. finite set
of (pseudo) continuous values

• Now: discrete (and binary) values
• Directly related to (labeled) graph-based

optimization
• In probabilistic modeling (on regular grid):

Markov random fields

38

Graphs

• Graph: algebraic structure G=(V, E)
• Nodes V={v1,v2,...,vn}
• Arcs E={e1,e2,...,em}, where ek is incident to

– an unordered pair of nodes {vi,vj}
– an ordered pair of nodes (vi,vj) (directed graph)
– degree of node: number of incident arcs

• Weighted graph: costs assigned to nodes or arcs

39

Terminology

• Markov chain: memoryless process with r.v. X
• Markov random field (undirected graphical model):

random variables (e.g. labels) over nodes with
Markov property (conditional independence)
– Pairwise
– Local
– Global

40

Conditional	Independence

V

vi

vj

Conditional	Independence

V

v

N(v)

Conditional	Independence

V

vi

vj

B
SA

Terminology

• If joint density strictly positive: Gibbs RF
• Ising model (interacting magnetic spins), energy

given as Hamiltonian function

• General form

• Configuration probability

44

1D:	Dynamic	Programming

• Problem: find optimal path from source node s to
sink note t

• Principle of Optimality: If the optimal path s-t goes
through r, then both s-r and r-t, are also optimal

45

1D:	Dynamic	Programming

• is the new cost assigned to node
• is the partial path cost between nodes and

46

C(vm1)

C(vm2)

C(vmn)

C(vm+1
k)

1D:	Dynamic	Programming

• is the new cost assigned to node
• is the partial path cost between nodes and

47

Examples

• Shortest path computation (contours / intelligent scissors)
• 1D signal restoration (denoising)
• Tree labeling (pictorial structures)
• Matching of sequences (curves)

while an algorithm completes the gaps between selected
points. However, a user may not know in advance how many
points they need to select before the algorithm can complete
the gaps accurately. With intelligent scissors, a user starts by
selecting a single point on the object boundary and then
moves the mouse around. As the mouse pointer moves, a
curve is drawn from the initial boundary point to the current
mouse location; hopefully, the curve will lie along the object
boundary. Mortensen and Barrett [78] pointed out that this
problem can be solved via shortest paths in a graph. The
graph in question has one vertex per pixel, and the edges
connect a pixel to the eight nearby pixels.

Let G be a graph where the vertices V are the pixels in the
image and the edges E connect each pixel to its eight closest
neighbors. The whole trick to intelligent scissors is to make
the weight of an edge small when it lies along an object
boundary. There are a number of ways in which this can be
accomplished, but the basic idea of [78] is to use features
that detect intensity edges since these tend to occur on the
boundary. For example, we can let the weight of an edge
connecting neighboring pixels be near zero if the image
gradient is high along this edge, while the weight is high if
the image gradient is low. This encourages shortest paths in
G to go along areas of the image with high gradient
magnitude. It also encourages the path to be straight.

Given an initial pixel p, we can solve a single-source
shortest paths problem in G to get an optimal curve from p
to every other image pixel. As the user moves the mouse
around, we draw the optimal curve from p to the current
mouse position. At any point in time, the user can click the
mouse button to select the current curve. The process then
restarts with a new initial point defined by the current
mouse location. In practice, this process allows a user to
select accurate boundaries with very little interaction.
Further ideas described in [78] include on-the-fly training
of the specific type of boundary being traced, and a
mechanism for segmentation without mouse clicks.

Fig. 6 shows an example of boundary tracing using the
approach, created using the livewire plugin for the ImageJ
toolbox.

5.2 Active Contour Models (Dynamic Programming)

Active contour models [56] are a popular tool for interactive
segmentation, especially in medical image analysis. In this
setting, the user specifies an initial contour close to a target
object. The active contour then seeks a nearby boundary
that is consistent with the local image features (which
typically means that it lies along intensity edges), and
which is also spatially smooth.

While the original paper [56] viewed active contours as
continuous curves, there is an advantage to taking a discrete
approach since the problem can then be solved via dynamic
programming [3]. Under this view, a contour is represented
by a sequence of n control points that define a closed or
open curve (via a polygon or some type of spline). A
candidate solution specifies a position for each control point
from a set of k possible positions. We can write such a
candidate solution as ðx1; . . . ; xnÞ and there are kn candidate
solutions.

There is a simple energy function we can define to
formalize the problem. A per-element cost DiðxiÞ indicates
how good a particular position is for the ith control point.
Typically, Di is low where the image gradient is high, so the
contour is attracted to intensity boundaries. A pairwise costV
encodes a spring-like prior, which is usually of the form
V ðxi; xiþ1Þ ¼ !kxi % xiþ1k2. This term encourages the con-
tour to be short.8 Finally, a cost H encodes a “thin plate
spline” prior, Hðxi; xiþ1; xiþ2Þ ¼ "kxi % 2 & xiþ1 þ xiþ2k2.
This term penalizes curves with high curvature.

Both V and H can be understood in terms of finite
difference approximations to derivative operators. Note that
we are assuming for the moment that we have an open curve.
The energy function is of the form given in (8) and thus can be
solved in Oðnk3Þ time with dynamic programming.

Active contour models provide a good example of the
trade-offs between local and global minimization. At one
extreme, suppose that the set of possible positions for each
control point was very large (for example, each control
point could be anywhere on the image). In this case, the
solution is independent of the initial placement of the
contour. However, because k is so large, the cost of
computing an optimal solution is high. In practice, we
usually consider positions for each control point that are
very near their initial position. The process is iterated
several times, with the previous solution defining the search
neighborhood for the next iteration. This is effectively a
local improvement method with a neighborhood system,
where each solution has kn neighbors. As we increase k, we
find the optimal solution within a larger neighborhood, but
at a greater computational cost.

A similar trade-off occurs once we consider closed
curves. In this case, there should be terms V ðxn; x1Þ,
Hðxn%1; xn; x1Þ, and Hðxn; x1; x2Þ in the energy function.
Naively, this would prohibit the use of dynamic program-
ming because the terms introduce cyclic dependencies in
the energy function. However, we can fix the position of x1

and x2 and find the optimal position for the other control

FELZENSZWALB AND ZABIH: DYNAMIC PROGRAMMING AND GRAPH ALGORITHMS IN COMPUTER VISION 731

Fig. 6. Tracing a boundary using intelligent scissors. Selected points
(mouse clicks) are marked by white squares, while the current mouse
position is marked by the arrow. (a) The shortest path from the first
selected point to a point on the ear. Selecting this path would cut through
the paw of the Koala. (b) How the paw can be selected with a few more
clicks is shown. (c) The result after more interaction.

8. The pairwise cost can also take into account the image data
underneath the line segment connecting two control points. This would
encourage the entire polygonal boundary to be on top of certain image
features.

x!i ¼ argmin
xi

Biþ1½xi; x!iþ1% þHðxi; x
!
iþ1; x

!
iþ2Þ

! "
:

This method takes Oðnk3Þ time. In general, we can minimize
energy functions that explicitly take into account the labels
of m consecutive elements in OðnkmÞ time.

4.4 Example Application: 1D Signal Restoration via
Dynamic Programming

As an example, consider the problem of restoring a one-
dimensional signal. We assume that a signal s is defined by
a finite sequence of regularly spaced samples s½i% for i from
1 to n. Figs. 3a and 3b show a clean signal and a noisy
version of that signal. The goal here is to estimate the
original signal s½i% from its noisy version r½i%. In practice, we
look for a signal s½i%, which is similar to r½i% but is smooth in
some sense. The problem can be formulated using an
objective function of the form in (3).

We can define the restored signal in terms of an assignment
of labels to the sequence of sample points. Let L be a
discretization of the domain of s (a finite subset of IR). Now
take DiðxiÞ ¼ !ðxi (r½i%Þ2 to ensure that the value we assign
to the ith sample point is close to r½i%. Here, ! is a nonnegative
constant controlling the relative weighting between the data
and prior cost. The form of V depends on the type of
smoothness constraint we want to impose on s. If we assume
that s is smooth everywhere, we can take V ðxi; xiþ1Þ ¼
ðxi (xiþ1Þ2. If we assume that s is piecewise smooth, we can
take V ðxi; xiþ1Þ ¼ minððxi (xiþ1Þ2; "Þ, where " controls the
maximum cost we assign to a “discontinuity” in the signal.
This second choice of V is often called the weak string model
in vision, following [11], which popularized this model and
its solution via dynamic programming.

Fig. 3 shows the result of restoring a noisy signal using
these two choices for the pairwise costs. Note that with either
choice for the pairwise cost, we can use the distance transform
methods mentioned above to find an optimal solution to the
restoration problem in OðnkÞ time. Here, n is the number of
samples in the signal and k is the number of discrete choices
for the value of the signal in each sample point.

4.5 Dynamic Programming on a Tree

The dynamic programming techniques described above
generalize to the situation where the set of elements we
want to label are connected together in a tree structure. We
will discuss an application of this technique for object
recognition in Section 6.3.

Let G be a tree where the vertices V ¼ fv1 . . . ; vng are the
elements we want to label and the edges in E indicate which
elements are directly related to each other. As before, let

DiðxiÞ be a cost for assigning label xi to the ith element. For
each edge fvi; vjg 2 E, we let Vijðxi; xjÞ ¼ Vjiðxj; xiÞ be a cost
for assigning two particular labels xi and xj to the ith and
jth element, respectively. Now an objective function can be
defined by analogy to the sequence case:

Eðx1; . . . ; xnÞ ¼
Xn

i¼1

DiðxiÞ þ
X

fvi;vjg2E
Vijðxi; xjÞ: ð11Þ

An optimal solution can be found as follows: Let vr be an
arbitrary root vertex in the graph (the choice does not affect
the solution). From this root, each vertex vi has a depth di
which is the number of edges between it and vr (the depth
of vr is zero). The children, Ci, of vertex vi are the vertices
connected to vi that have depth di þ 1. Every vertex vi other
than the root has a unique parent, which is the neighboring
vertex of depth di (1. Fig. 4 illustrates these concepts.

We define n tables Bi, each with k ¼ jLj entries such that
Bi½xi% denotes the cost of the best labeling of vi and its
descendents, assuming the label of vi is xi. These values can
be defined using the recursive equation:

Bi½xi% ¼ DiðxiÞ þ
X

vj2Ci

min
xj
ðBj½xj% þ Vijðxi; xjÞÞ: ð12Þ

For vertices with no children we have Bi½xi% ¼ DiðxiÞ. The
other tables can be computed in terms of each other in
decreasing depth order. Note that Br½xr% is the cost of the
best labeling of the whole graph, assuming that the label of
the root is xr.

After all tables are computed, we can find a global
minimum of the energy function by picking x!r ¼
arg minxrBr½xr% and tracing back in order of increasing depth:

x!i ¼ arg min
xi
ðBi½xi% þ Vijðxi; x!j ÞÞ;

FELZENSZWALB AND ZABIH: DYNAMIC PROGRAMMING AND GRAPH ALGORITHMS IN COMPUTER VISION 729

Fig. 3. (a) A one-dimensional signal. (b) Noisy version of the signal. (c) Restoration using the prior V ðxi; xiþ1Þ ¼ ðxi (xiþ1Þ2. (d) Restoration using

the prior V ðxi; xiþ1Þ ¼ minððxi (xiþ1Þ2; "Þ.

Fig. 4. Dynamic programming on a tree. A tree where the root is labeled
r and every other node is labeled with its depth. The dashed vertices are
the descendents of the bold vertex. The best labels for the dashed
vertices can be computed as a function of the label of the bold vertex.

6.3 Pictorial Structures (Dynamic Programming)

Pictorial structures [36], [34] describe objects in terms of a
small number of parts arranged in a deformable configura-
tion. A pictorial structure model can be represented by an
undirected graph G, where the vertices correspond to the
object parts and the edges represent geometric relationships
between pairs of parts. An instance of the object is given by
a configuration of its parts x ¼ ðx1; . . . ; xnÞ, where xi 2 L
specifies the location of the ith part. Here, Lmight be the set
of image pixels or a more complex parameterization. For
example, in estimating the configuration of a human body,
xi 2 L could specify a position, orientation, and amount of
foreshortening for a limb. Let DiðxiÞ be a cost for placing the
ith part at location xi in an image. The form of Di depends
on the particular kinds of objects being modeled (though
typically it measures the change in appearance); we will
simply assume that it can be computed in a small amount of
time. For a pair of connected parts, let Vijðxi; xjÞ measure
the deformation of a virtual spring between parts i and j
when they are placed at xi and xj, respectively.

The matching problem for pictorial structures involves
moving a model around an image, looking for a configura-
tion where each part looks like the image patch below it and
the springs are not too stretched. This is captured by an
energy function of the form in (2). A configuration with low
energy indicates a good hypothesis for the object location.

Let n be the number of parts in the model and k be the
number of locations in L. Felzenszwalb and Huttenlocher
[34] showed how to solve the optimization problem for
pictorial structures in OðnkÞ time when the set of connec-
tions between parts forms a tree and the deformation costs,
Vij, are of a particular form. This running time is optimal
since it takes oðnkÞ to evaluate DiðxiÞ for each part at each
location. This means that we can find the best coherent
configuration for the object in the same (asymptotic) time it
would take to find the best location for each part
individually.

For tree models, the energy function for pictorial
structures has exactly the same form as the energy in (11).
The algorithm from [34] works by speeding up the dynamic
programming solution outlined in Section 4.5 using gen-
eralized distance transforms.

Let f be a function from locations in a grid to IR. The
quadratic distance transform, Df , of f is another function
from grid locations to IR, DfðxÞ ¼ minyðkx$ yk2 þ fðyÞÞ. If f
and Df are defined in a regular grid with k locations, then
Df can be computed in OðkÞ time using computational
geometry techniques [33].

Consider the case where L corresponds to image pixels,
and for each pair of connected parts vi and vj, there is an ideal
relative displacement lij between them. That is, ideally,
xj & xi þ lij. We can define a deformation cost Vijðxi; xjÞ ¼
kðxi þ lijÞ $ xjk2. We can think of the tables Bi used in the
dynamic programming algorithm from Section 4.5 as func-
tions from image pixels to costs. For the special type of
deformation costs defined here, (12) can be expressed as

BiðxiÞ ¼ DiðxiÞ þ
X

vj2Ci

DBjðxi þ lijÞ:

In this form, Bi can be computed in amortized OðkÞ time
once DBj are computed.

Fig. 10 shows the result of matching a model of the
human body to two images, using a model from [34]. In this
case, the model has 10 body parts that are connected
together in a tree structure corresponding to some of the
main joints in a human body. A label for a part specifies a
2D location, scale, orientation, and foreshortening.

7 DISCRETE OPTIMIZATION ALGORITHMS FOR

STEREO

As described in Section 2.1, energy functions of the form
given in (2) have been applied to pixel labeling problems for
many years. Stereo is perhaps the vision problem where
discrete optimization methods have had their largest
impact; historically, it was one of the earliest examples
where dynamic programming was applied [5], [79], while
many top-performing methods rely on graph cuts [92].
Most of the issues that we consider here arise in a wide
range of pixel labeling problems in early vision. This is
particularly true of the graph cuts techniques we discuss,
which have been applied to many problems outside of
stereo, as well as to problems in related fields such as
computer graphics (see [17] for a survey).

The stereo problem is easily formulated as a pixel
labeling problem of the form in (2), where the labels
correspond to disparities. There is usually a simple way to
measure the local evidence for a label in terms of intensity
differences between pixels in different images, while a prior
is used to aggregate evidence from nearby pixels.

In stereo and pixel labeling in general, it is important to
have a prior that does not oversmooth. Both the complexity
of the energy minimization problem and the accuracy of the
solutions turn out to heavily depend on the choice of prior.
Here, we assume that Vij ¼ V for a pair of neighboring
pixels and zero otherwise. If V never exceeds some value,
we will refer to it as bounded. Such choices of V are
sometimes referred to as redescending, robust, or disconti-
nuity-preserving (the first two terms come from robust
statistics [45]). If V is not bounded, then adjacent pixels will
be forbidden to have dramatically different labels. Such a V
is believed to oversmooth boundaries, which accounts for
the generally poor performance of such methods on the
standard stereo benchmarks [92] (also see [100, Fig. 3.10] for

734 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 4, APRIL 2011

Fig. 10. Matching a human body model to two images using the pictorial
structures formulation. The model has 10 parts connected together in a
tree structure. The connections correspond to some of the main joints of
the human body. A matching assigns a location for each part. In this
case, the location of a part specifies its position, orientation, and
foreshortening.

6.1 Recognition Using Shape Contexts
(Bipartite Matching)

Belongie et al. [9] described a method for comparing edge
maps (or binary images) which has been used in a variety of
applications. The approach is based on a three-stage
process: 1) A set of correspondences is found between the
points in two edge maps, 2) the correspondences are used to
estimate a nonlinear transformation aligning the edge maps,
and 3) a similarity measure between the two edge maps is
computed which takes into account both the similarity
between corresponding points and the amount of deforma-
tion introduced by the aligning transformation.

Let A and B be two edge maps. In the first stage of the
process, we want to find a mapping ! : A! B putting each
point in A in correspondence to its “best” matching point in
B. For each pair of points pi 2 A and pj 2 B, a cost Cðpi; pjÞ
for mapping pi to pj is defined, which takes into account the
geometric distribution of edge points around pi and pj. This
cost is based on a local descriptor called the shape context of
a point. The descriptor is carefully constructed so that it is
invariant to translations and fairly insensitive to small
deformations. Fig. 8 illustrates two points on different
shapes with similar shape contexts.

Given the set of matching costs between pairs of points
in A and B, we can look for a map ! minimizing the total
cost, Hð!Þ ¼

P
pi2A Cðpi;!ðpiÞÞ, subject to the constraint that

! is one-to-one and onto. This is precisely the weighted
bipartite matching problem from Section 3.4. To solve the
problem, we build a bipartite graph G ¼ ðV; EÞ such that
V ¼ A [B and there is an edge between each vertex pi in A
and each vertex pj in B with weight Cðpi; pjÞ. Perfect
matchings in this graph correspond to valid maps ! and the
weight of the matching is exactly the total cost of the map.

To handle outliers and to find correspondences between
edge maps with different numbers of points, we can add
“dummy” vertices to each side of the bipartite graph to
obtain a new set of vertices V0 ¼ A0 [B0. We connect a
dummy vertex in one side of the graph to each nondummy
vertex in the other side using edges with a fixed positive
weight, while dummy vertices are connected to each other
by edges of weight zero. Whenever a point in one edge map
has no good correspondence in the other edge map, it will
be matched to a dummy vertex. This is interpreted as
leaving the point unmatched. The number of dummy
vertices in each side is chosen so that jA0j ¼ jB0j. This

ensures that the graph has a perfect matching. In the case
where A and B have different sizes, some vertices in the
larger set will always be matched to dummy vertices.

6.2 Elastic Curve Matching (Dynamic Programming)
Now consider the problem of finding a set of correspon-
dences between two curves. This is a problem that arises
naturally when we want to measure the similarity between
two shapes. Here, we describe a particularly simple
formulation of this problem. Similar methods have been
used in [7], [73], [94].

Let A ¼ ða0; . . . ; an$1Þ and B ¼ ðb0; . . . ; bm$1Þ be two
sequences of points along two open curves. It is natural to
look for a set of correspondences between A and B that
respect the natural ordering of the sample points. Fig. 9
shows an example. This is exactly the sequence matching
problem described in Section 4.6.

Different curve matching methods can be defined by
choosing how to measure the cost of matching two points
on different curves, Cðai; bjÞ. There should also be a cost "
for leaving a point in A or B unmatched. The simplest
approach for defining Cðai; bjÞ is to measure the difference
in the curvature of A at ai and B at bj. In this case, the cost
Cðai; bjÞ will be low if the two curves look similar in the
neighborhood of ai and bj.

When Cðai; bjÞ measures difference in curvature, the
minimum cost of a matching between A and B has an
intuitive interpretation. It measures the amount of bending
and stretching necessary to turn one curve into the other.
The costs Cðai; bjÞ measure the amount of bending, while
the “gap-costs” " measure the amount of stretching.

In the case of closed curves, the order among points in
each curve is only defined up to cyclic permutations. There
are at least two different approaches for handling the
matching problem in this case. The most commonly used
approach is to independently solve the problem for every
cyclic shift of one of the curves. This leads to an OðmnkÞ
algorithm, where k ¼ minðm;nÞ. An elegant and much
more efficient algorithm is described in [74] which solves
all of these problems simultaneously in Oðmn log kÞ time.
That algorithm is based on a combination of dynamic
programming and divide and conquer.

FELZENSZWALB AND ZABIH: DYNAMIC PROGRAMMING AND GRAPH ALGORITHMS IN COMPUTER VISION 733

Fig. 8. The shape context at a point p is a histogram of the positions of
the remaining points relative to the position of p. Using histogram bins
that are uniform over log-polar space, we obtain a reasonable amount of
invariance to deformations. Here, we show two points on different
shapes with similar descriptors. In this case, the cost of matching the
two points would be small.

Fig. 9. Matching two curves. We can think of the goal of matching as
bending and stretching the curves to make them identical. The cost of
bending is captured by the matching cost between two points. An
unmatched point in one curve corresponds to a local stretch in the other.
In this case, a3, a6, and b2 are left unmatched.

48

Gibbs	Model	/Markov	Random	Field

• Attempts to generalize dynamic programming to
higher dimensions unsuccessful

• Minimize
using arc-weighted graphs

• Two special terminal nodes, source s (e.g. object) and
sink t (e.g. background) hard-linked with seed points

49

Graph	Cut:	Two	types	of	arcs

– n-links: connecting neighboring pixels, cost given by
the smoothness term V

– t-links: connecting pixels and terminals,
cost given by the data term D

50

Graph	Cut

• s-t cut is a set of arcs, such that the nodes and the remain-
ing arcs form two disjoint graphs with points sets S and T

• cost of cut: sum of arc cost
• minimum s-t cut problem (dual: maximum flow problem)

51

Graph	Cut

• n-link costs: large if two nodes belong to same segment,
e.g. inverse gradient magnitude, Gauss, Potts model

• t-link costs:
– K for hard-linked seed points (K > maximum sum of

data terms)
– 0 for the opposite seed point

• Submodularity

52

Demonstration

53

Examples	/	Discussion

• Binary problems solvable in polynomial time (albeit slow)
– Binary image restoration
– Bipartite matching (perfect assignment of graphs)

• N-ary problems (more than two terminals) are NP-hard
and can only be approximated (e.g. α-expansion move)
– Stereo application has quantization (it used to be

popular because many evaluation sets used discrete
depths)

54

www.liu.se

Michael	Felsberg

michael.felsberg@liu.se

