Variational Methods

Computer Vision, Lecture 15
Michael Felsberg
Computer Vision Laboratory
Department of Electrical Engineering

- 1 LINKÖPINES

UNVERSITET

Optimization: Overview

Function		$\begin{array}{c}\text { Output (codomain / } \\ \text { target set) }\end{array}$	
	Set	Continuous	Discrete
$\begin{array}{c}\text { Input (domain } \\ \text { of definition) }\end{array}$	Continuous	Lecture 15	Lecture 15
	Discrete	Lecture 13	Lecture 13
ex: diffusion			

segmentering\end{array}\right]\)

Repetition: Vector Analysis

- Nabla operator $\nabla=\left[\begin{array}{l}\partial_{x} \\ \partial_{y}\end{array}\right]=\left[\begin{array}{c}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y}\end{array}\right]$
- On a scalar function $\nabla f=\operatorname{grad} f=\left[\begin{array}{l}\partial_{x} f \\ \partial_{y} f\end{array}\right]=\left[\begin{array}{l}f_{x} \\ f_{y}\end{array}\right]$
- On a vector field $\langle\nabla \mid \mathbf{f}\rangle=\nabla^{T} \mathbf{f}=\operatorname{div} \mathbf{f}=\partial_{x} f_{1}+\partial_{y} f_{2}$
- Laplace $\Delta=\nabla^{2}=\langle\nabla \mid \nabla\rangle=\operatorname{div} \operatorname{grad}=\partial_{x}^{2}+\partial_{y}^{2}$ operator $\quad\left(\partial_{x}^{2} f=f_{x x} \neq f_{x}^{2}\right)$
- Green's first identity $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$ $\int_{\Omega}(f \Delta g+\langle\nabla f \mid \nabla g\rangle) d \mathbf{x}=\oint_{\partial \Omega} f\langle\nabla g \mid \mathbf{n}\rangle d S=0$
1.0

Evolution Equation

- diffusion is an evolution process starting from the original image: initial value problem (IVP)
- discrete steps: gradient descent steps (forward Newton scheme) on a
boundary value problem (BVP)
- BVP is obtained by variational calculus from a continuous objective function

1.

Variational Methods

- Minimize the local integral of a Lagrange function $L\left(f, f_{x}, f_{y}, x, y\right)$

$$
\varepsilon(f)=\int_{\Omega} L(f, \nabla f, \mathbf{x}) d \mathbf{x}
$$

- gives the Euler-Lagrange equation on Ω

$$
L_{f}-\operatorname{div} L_{\nabla f}=L_{f}-\partial_{x} L_{f_{x}}-\partial_{y} L_{f_{y}}=0 \quad \forall x, y
$$

- if we require $\langle\nabla f \mid \mathbf{n}\rangle=0 \quad$ on $\partial \Omega$

1.U Unviangs

Insight: EL Equation

- for all test functions g, the Gâteaux derivative

$$
\langle\delta \varepsilon(f), g\rangle=\left.\frac{d \varepsilon(f+\eta g)}{d \eta}\right|_{\eta=0}=\lim _{\eta \rightarrow 0} \frac{\varepsilon(f+\eta g)-\varepsilon(f)}{\eta}
$$

must vanish (scalar product in function space)

- Inserting the Lagrangian gives

$$
\begin{aligned}
\langle\delta \varepsilon(f), g\rangle & =\int_{\Omega} \lim _{\eta \rightarrow 0} \frac{L(f+\eta g, \nabla(f+\eta g), \mathbf{x})-L(f, \nabla f, \mathbf{x})}{\eta} d \mathbf{x} \\
& =\left\langle L_{f}(f, \nabla f, \cdot), g\right\rangle+\left\langle L_{\nabla f}(f, \nabla f, \cdot), \nabla g\right\rangle
\end{aligned}
$$

- Note $h(\mathbf{y})=h(\mathbf{a})+(\mathbf{y}-\mathbf{a})^{T} \nabla h(\mathbf{a})+\mathcal{O}\left(|\mathbf{y}-\mathbf{a}|^{2}\right)$

Insight: EL Equation

- use homogenity of Green's first identity

$$
\left\langle L_{\nabla f}, \nabla g\right\rangle+\left\langle\operatorname{div} L_{\nabla f}, g\right\rangle=\oint_{\partial \Omega}\left(L_{\nabla f}^{T} \mathbf{n}\right) g d S=0
$$

to rewrite $\left\langle L_{\nabla f}, \nabla g\right\rangle=-\left\langle\operatorname{div} L_{\nabla f}, g\right\rangle$

- thus $\langle\delta \varepsilon(f), g\rangle=\left\langle L_{f}-\operatorname{div} L_{\nabla f}, g\right\rangle$
- and we obtain the necessary condition (for all \mathbf{x})

$$
L_{f}-\operatorname{div} L_{\nabla f}=0
$$

Linear Regularization

- Minimizing $\varepsilon(f)=\frac{1}{2} \int_{\Omega} f_{x}^{2}+f_{y}^{2} d x d y$
i.e. no data term $L\left(f, f_{x}, f_{y}, x, y\right)=L\left(f_{x}, f_{y}, x, y\right)$
- Gives the Euler-Lagrange equation (note: $L_{f}=0, L_{f_{x}}=f_{x}, L f_{y}=f_{y}$)

$$
\left(\partial_{x} f_{x}+\partial_{y} f_{y}\right)=\Delta f=0
$$

- Such that gradient descent gives $f^{(s+1)}=f^{(s)}+\alpha \Delta f^{(s)}$ or continuous formulation $f_{s}=\operatorname{div}(\nabla f)=\Delta f$
- Converges towards trivial solution

1. 1 Mñow

Non-Linear Regularization

- Minimizing $\quad \varepsilon(f)=\int_{\Omega} \Psi(|\nabla f|) d x d y$
special case: $\Psi()=\operatorname{Id}() \Rightarrow \Psi^{\prime}()=1$
- Gives the Euler-Lagrange equation
$\partial_{x} \frac{\Psi^{\prime}(|\nabla f|)}{|\nabla f|} f_{x}+\partial_{y} \frac{\Psi^{\prime}(|\nabla f|)}{|\nabla f|} f_{y}=\operatorname{div}\left(\frac{\Psi^{\prime}(|\nabla f|)}{|\nabla f|} \nabla f\right)=0$
- Such that gradient descent gives

$$
f^{(s+1)}=f^{(s)}+\alpha \operatorname{div}\left(\frac{\Psi^{\prime}\left(\left|\nabla f^{(s)}\right|\right)}{\left|\nabla f^{(s)}\right|} \nabla f^{(s)}\right)
$$

Interpretation

- Diffusion is an evolution over "time" s
- Starts at the measured image (IVP)
- Converges towards DC signal
- Critical parameter 1: "stopping time"
- Critical parameter 2: α
- Several examples in the enhancement lecture
- Such that gradient descent gives Perona-Malik Flow

$$
f^{(s+1)}=f^{(s)}+\alpha \operatorname{div}\left(\frac{\Psi^{\prime}\left(\left|\nabla f^{(s)}\right|\right)}{\left|\nabla f^{(s)}\right|} \nabla f^{(s)}\right)
$$

Lnow wixisi

Beyond Diffusion

- In what follows: add data term to minimization problem
- Converges towards non-trivial solution
- IVP with standard forward Euler scheme

Linear Restauration

- Minimizing

$$
\varepsilon(f)=\frac{1}{2} \int_{\Omega} \frac{\left(f-f_{0}\right)^{2}+\lambda\left(f_{x}^{2}+f_{y}^{2}\right)}{L\left(f, f_{x}, f_{y}, x, y\right)} d x d y
$$

- Gives the Euler-Lagrange equation

$$
\underbrace{f-f_{0}}_{L_{f}^{\prime}}-\underset{\operatorname{div}\left(L_{f_{x}}, L_{f_{y}}\right)}{\lambda \Delta f}=0
$$

- Such that gradient descent gives

$$
\begin{aligned}
f^{(s+1)} & =f^{(s)}-\alpha\left(f^{(s)}-f_{0}-\lambda \Delta f^{(s)}\right) \\
& =(1-\alpha) f^{(s)}+\alpha\left(f_{0}+\lambda \Delta f^{(s)}\right)
\end{aligned}
$$

1.

1.U Invidugs

Non-Linear Restauration

- Minimizing

$$
\varepsilon(f)=\int_{\Omega} \frac{1}{2}\left(f-f_{0}\right)^{2}+\lambda \Psi(|\nabla f|) d x d y
$$

- Gives the Euler-Lagrange equation

$$
f-f_{0}-\lambda \operatorname{div}\left(\frac{\Psi^{\prime}(|\nabla f|)}{|\nabla f|} \nabla f\right)=0
$$

- Such that gradient descent gives

$$
\begin{aligned}
f^{(s+1)} & =f^{(s)}-\alpha\left(f^{(s)}-f_{0}-\lambda \operatorname{div}\left(\frac{\Psi^{\prime}\left(\left|\nabla f^{(s)}\right|\right)}{\left|\nabla f^{(s)}\right|} \nabla f^{(s)}\right)\right) \\
& =(1-\alpha) f^{(s)}+\alpha\left(f_{0}+\lambda \operatorname{div}(\ldots)\right)
\end{aligned}
$$

1.UUMNOANES

Example (lecture 13)

- Paramters: $\alpha=0.0005, \lambda=0.5$, noise($0,0.001$)

1.U.

Explicit vs Implicit

- All gradients so far are based on the previous estimate: the time discretization leads to an explicit scheme (least calculations, easiest)
- If the gradients are based on the new estimate, we obtain an implicit scheme (always stable, large time steps)
- If the gradients are based on both, we obtain the Crank-Nicolson scheme (always stable, small time steps)

1.0U Munama

The Data Term

- Data term can be used to describe the measurement model
- Uses the measured image as input in each iteration
- Converges towards non-trivial solution
- Leads to non-trivial iterations
- Critical parameter 1: "meta" parameter $\boldsymbol{\lambda}$
- Critical parameter 2: α

1.0

Deblurring

- Minimizing

$$
\varepsilon(f)=\frac{1}{2} \int_{\Omega}\left(g * f-f_{0}\right)^{2}+\lambda\left(f_{x}^{2}+f_{y}^{2}\right) d x d y
$$

- Gives the Euler-Lagrange equation

$$
g(-\cdot) *\left(g * f-f_{0}\right)-\lambda \Delta f=0
$$

- Such that gradient descent gives

$$
f^{(s+1)}=f^{(s)}-\alpha\left(g(-) *\left(g * f^{(s)}-f_{0}\right)-\lambda \Delta f^{(s)}\right)
$$

Comments

- g : point spread function (PSF)
- $g(-x)$: correlation operator / adjoint operator
- even symmetry PSF: self adjoint
- definition of adjoint operator $\langle x \mid A y\rangle=\left\langle A^{*} x \mid y\right\rangle$
- Example from lecture 13

Optical Flow $\quad \mathbf{f}=\left[\begin{array}{l}f_{1} \\ f_{2}\end{array}\right]$

- Minimizing BCCE
$\varepsilon(\mathbf{f})=\frac{1}{2} \int_{\Omega}^{\left(\langle\mathbf{f} \mid \nabla g\rangle+g_{t}\right)^{2}}+\lambda\left(\left|\nabla f_{1}\right|^{2}+\left|\nabla f_{2}\right|^{2}\right) d x d y$
- Gives the Euler-Lagrange equation (HS!)

$$
\left(\langle\mathbf{f} \mid \nabla g\rangle+g_{t}\right) \nabla g-\lambda \Delta \mathbf{f}=0
$$

- Laplacian is approximately

$$
\begin{aligned}
& \Delta \mathbf{f} \approx \mathbf{f}-\mathbf{f}
\end{aligned}
$$

1.

Optical Flow

- Plugging into the EL-equation gives

$$
\left(\lambda+\nabla g \nabla g^{T}\right) \mathbf{f}=\lambda \overline{\mathbf{f}}-g_{t} \nabla g
$$

- Explicitly solving for \mathbf{f} results in
$\left(\lambda+\nabla g \nabla g^{T}\right) \mathbf{f}=\left(\lambda+\nabla g \nabla g^{T}\right) \overline{\mathbf{f}}-\left(\nabla g \nabla g^{T} \overline{\mathbf{f}}+\nabla g g_{t}\right)$
$=\left(\lambda+\nabla g \nabla g^{T}\right) \overline{\mathbf{f}}-\nabla g\left(\nabla g^{T} \overline{\mathbf{f}}+g_{t}\right)$
$=\left(\lambda+\nabla g \nabla g^{T}\right) \overline{\mathbf{f}}-\frac{\lambda+\nabla g^{T} \nabla g}{\lambda+\nabla g^{T} \nabla g} \nabla g\left(\nabla g^{T} \overline{\mathbf{f}}+g_{t}\right)$
$=\left(\lambda+\nabla g \nabla g^{T}\right) \overline{\mathbf{f}}-\frac{\lambda+\nabla g \nabla g^{T}}{\lambda+\nabla g^{T} \nabla g} \nabla g\left(\nabla g^{T} \overline{\mathbf{f}}+g_{t}\right)$
$\mathbf{f}=\overline{\mathbf{f}}-\frac{1}{\lambda+\nabla g^{T} \nabla g} \nabla g\left(\nabla g^{T} \overline{\mathbf{f}}+g_{t}\right)$
|culunionus

1.0)

Segmentation / Contours

- Segmentation function (level-set function) to be optimized
- Negative / positive in background / object region
- Contour is the zero-level

Segmentation / Contours

- Chan-Vese energy minimized of level-set function ϕ $E(\phi)=\int_{\Omega}(H(\phi)-1) f_{2}-H(\phi) f_{1}+\lambda|\nabla H(\phi)| d \mathbf{x}$
- H is the (regularized) Heaviside function
- f are weights computed from the image (e.g. squared deviation from certain greyscale)
- EL equation

$$
\delta(\phi)\left(f_{2}-f_{1}+\lambda \operatorname{div}\left(\frac{\nabla \phi}{|\nabla \phi|}\right)\right)=0
$$

- Problem: (regularized) delta function δ

-du UNiopmgs

Segmentation / Contours

- Binary function instead of level-set function
- becomes Ising model (lecture 13)

$$
E(\phi)=-\int_{\Omega_{2}} f_{2} d \mathbf{x}-\int_{\Omega_{1}} f_{1} d \mathbf{x}+\lambda|C|
$$

- Hard to solve - use relaxation
- Binary function replaced by smooth approximation
- After optimization apply threshold
- Discrete optimization (lecture 13)
1.0.

Demonstration

Alternative Contour Methods

- Popular application:

Reconstruction using 1 coeffs

- Geodesic active contours
- Snakes
- Contour parametrized as
$\mathbf{v}(s)=[x(s), y(s)] \quad s \in[0,1]$

- Usually approximated as spline
- Option: Fourier descriptors

Geodesic Active Contours

- Consider a curve moving in time

$$
\mathbf{v}(s, t)=[x(s, t), y(s, t)]
$$

- let the curve develop according to the inward normal n and the curvature c

$$
\frac{\partial \mathbf{v}}{\partial t}=V(c) \mathbf{n}
$$

1.

|hou wivervili

Geodesic Active Contours

- Assume level set function $\phi(x, y, t)$
such that $\phi(\mathbf{v}(s, t), t)=0$
- Negative inside and positive outside gives

$$
\mathbf{n}=-\frac{\nabla \phi}{|\nabla \phi|}
$$

- Plug in normal into evolution equation gives

$$
\frac{\partial \mathbf{v}}{\partial t}=-\frac{V(c) \nabla \phi}{|\nabla \phi|}
$$

$$
\begin{aligned}
& \text { Snake Function } \\
& \text { - Energy function consists of typically } 3 \text { terms: } \\
& \quad \text { - internal energy } \\
& \text { - image forces } \\
& \quad \text { - external constraint forces } \\
& \varepsilon(\mathbf{v}(s))=\int_{0}^{1} E_{\text {int }}(\mathbf{v}(s))+E_{\text {image }}(\mathbf{v}(s))+E_{\operatorname{con}}(\mathbf{v}(s)) d s \\
& \hline
\end{aligned}
$$

Geodesic Active Contours

- What remains is to re-write I.h.s. of

$$
\frac{\partial \mathbf{v}}{\partial t}=-\frac{V(c) \nabla \phi}{|\nabla \phi|}
$$

- Time derivative of $\phi(\mathbf{v}(s, t), t)$ gives

$$
\begin{aligned}
& \frac{\partial \phi}{\partial t}+\nabla \phi \frac{\partial \mathbf{v}}{\partial t}=0 \\
& \frac{\partial \phi}{\partial t}=V(c)|\nabla \phi|
\end{aligned}
$$

- Such that
- Level-set equation

101 Unvopus

GVF Snakes

- Gradient vector flow snakes
- GVF used as external force
- GVF field computation related to optical flow approach

l.ow wixmin

