
Version: February 12, 2019

c© Computer Vision Laboratory

Linköping University

Name of student

Personal number

Date

Teaching assistant

The Harris Operator and the LK Tracker
Lab Exercise 1

1 Introduction

During this exercise, you will implement the original version of the widely used Lucas-Kanade Feature
Tracker (LK Tracker). The LK tracking algorithm is computationally heavy so in this computer exercise
we will make the restriction to track just one region centered around one pixel. This means that we need
to choose which pixel to track. Due to the close relationship between the LK tracker and the Harris
operator we will use the Harris operator to detect good features to track.

1.1 Preparations

Before the exercise you should have read through this exercise guide and completed the home exercises.
They are all clearly marked with a pointing finger. To be able to do this you should have read, and
understood, the simplified paper on LK tracking that can be found at the course homepage. When we
are asking questions on a specific expression or variable, e.g. T, we are using the same notation as in the
simplified paper supplied together with this document [1]. It is important to have an understanding of
the different steps in the algorithm to be able to complete the computer exercises in time.
Expected preparation time: 4h

This exercise should be completed using Python. Reminder: Be careful not to confuse (x, y) and
(row, col) indexing as you will likely use both in the lab.

To use Python in the ISY computer rooms you need to issue module add courses/TSBB15 at the
shell prompt. After that you can use python3 script.py to run a Python script. If you use multiple
scripts (recommended) you can save and load data using either the pickle module, or np.save/load.
For interactive work you can optionally use ipython3, which allows e.g. tab-completion and syntax
highlighting (you should still use python3 to run any scripts!).

To access the help code add import lab1 to your scripts. Now you can use the packaged functions
in your code such as lab1.load lab image and lab1.get cameraman. You can also use help(lab1) to
see a description of the package.

2 Algorithm Outline

It is important to have an understanding of the different steps in the LK tracking algorithm to be able
to complete the computer exercises in time. Before coming to this computer exercise you should have a
clear strategy on how to approach the problem.

Preparation Question: Draw a block diagram that outlines the main steps in the algorithm:

1



Preparation Question: Write the final equation that is needed to update the displacement:

Preparation Question: Using the notation in [1], explain what T is:

Preparation Question: What is required of T, for the final equation to be solved?

The LK tracking algorithm is computationally heavy if we try to track every pixel in the image. In this
computer exercise we will make the restriction to only a single pixel. This means that we need to choose
one pixel to track.

Preparation Question: Given your knowledge about the aperture problem and the answer to the question
above, what should characterize a pixel (or region) we choose to track?

3 The LK Tracker

Here you will implement the blocks needed to create your LK tracker.

3.1 Gradient Function

To be able to estimate the orientation tensor needed by the LK tracker and the Harris operator we need
a function that estimates the horizontal and vertical derivatives for all pixels. Implement a function that
takes a filter size and a standard deviation as inputs, and returns the regularized derivatives for an image.

One possible function signature is image gradient(I, J, ksize, sigma)→ Ig, Jg, Jgdx, Jgdy.
Hint: This was discussed in the computer lesson.

3.2 Estimating T

You will need to implement a function that estimates an orientation tensor for a specified region. Make
this function as general as possible, i.e. make it possible to use different window sizes and also non-square
windows.

One possible function signature is estimate T(Jgdx, Jgdy, x, y, window size)→ T

3.3 Difference Function

To update the displacement with the LK equations we need to estimate e for a specified region. Implement
a function that does this. Make this function as general as possible, i.e. make it possible to use different
window sizes and also non-square windows.

One possible function signature is estimate e(Ig, Jg, Jgdx, Jgdy, x, y, window size)→ e

2



3.4 Interpolation Function

During the gradient descent iterations, it is apparent that we need to obtain intensity values for non-
integer pixel values. You need to implement a function to access these values. Create a function that
returns the interpolated intensity values for all sub-pixel positions specified by a region of interest. You
might want to implement more than one interpolating function but that is not required to pass the
computer exercise.

Hint: You can use scipy.interpolate.RectBivariateSpline to get an interpolation function.

3.5 Finalizing the LK Tracker

Now when you have all the building blocks (the gradient function, the orientation tensor function, the
difference function and the interpolating function) you should be able to finalize the LK tracker. What
you basically need is to solve the displacement equation and a control loop that updates the displacement
vector until some stopping criterion is met, e.g. small enough error or maximum number of iterations.

Hint: To solve a linear equation system use np.linalg.solve.

Check that your implementation is working correctly. To do this, use the function get cameraman()

to obtain I,J and dTrue. I is the original image, J is a shifted version of the same image, and dTrue
is a vector describing the displacement between the images. Track a region with [height,width]=[70,40]
centered around [row,col]=[85,120]. When testing your implementation, your estimated displacement d
should come close to dTrue even after the first iteration. Verify that the estimated displacement is
improved when using several iterations.

Question: What are the estimated displacements after the first and second iteration? What is
the true displacement?

4 The Harris Operator

For the previous exercise we manually selected a region to track, but we would like to be able to automat-
ically detect good features to track. We will use the Harris operator for this due to the close relationship
between the Harris Operator and the LK tracker. Look at the answer to the previous preparation ques-
tion. You should have come to the conclusion that good features to track are basically the same features
that we can detect by using the Harris operator.
Preparation Question: Write down the expression used to calculate the Harris response.

You will implement a function to estimate the Harris response for each pixel in the image. We will later
use this function to extract a good feature to track with our LK tracker.

4.1 Orientation Tensor

Implement a function that returns the orientation tensor for all pixels in an image.
One possible function signature is orientation tensor(img, grad ksize, grad sigma, window size)→ T.
Hint: This was discussed in lesson 2.

3



4.2 Implementation of the Harris Operator

Now when we have the orientation tensor you should be able to estimate the Harris response for all pixels.
Implement a function that estimates the Harris response for all pixels in an image.

One possible function signature is harris(img, grad ksize, grad sigma, ksize, kappa)→ H.
Test this function on the image cornertest.png. By choosing a threshold for the Harris response

you should be able to detect good features to track.

Question: When raising the threshold for the Harris response, you will end up with some
distinct features. Are these the expected features?

You may end up with clusters of several neigbouring points above the threshold. Such clusters can be
removed by 2D non-max suppression.

Hint: The function scipy.signal.order filter can do this for you, e.g.
>> img max = order filter(img, np.ones((3, 3)), 9-1)

>> [row, col] = np.nonzero(img == img max)

5 Combining LK and the Harris Operator

Now when you are sure that the LK tracker and the Harris operator are working, it is time to combine
them. Use the Harris operator to find the best K features in chessboard 1.png that should be tracked in
the subsequent frames chessboard 2,chessboard 3,..,chesssboard 10. Avoid tracking features near
the border of the image, since these might cause trouble.

Question: Show your lab assistant when you got a working implementation of this. Track
the best K = 5 features and make sure that you are displaying the result obtained
between each frame.

4



6 Regularised LK

Extra
This exercise should be done if there is time left.
You may have noticed that the LK tracker can get stuck in local minima. To get a more robust tracker we
can perform the tracking using gradually reduced regularisation. That is, we start by using a large stan-
dard deviation while extracting the gradients from the image. By reducing the standard deviation each
time our LK tracker has converged, we might be able to avoid local minima. Try this with σ = 4, 3, 2, 1.

Question: Did this improve the performance?

References

[1] Björn Johansson. Derivation of the Lucas-Kanade tracker. 2007.

5


	Introduction
	Preparations

	Algorithm Outline
	The LK Tracker
	Gradient Function
	Estimating T
	Difference Function
	Interpolation Function
	Finalizing the LK Tracker

	The Harris Operator
	Orientation Tensor
	Implementation of the Harris Operator

	Combining LK and the Harris Operator
	Regularised LK

