2

TSBB15 Computer Vision

Lecture 4 Motion estimation and optical flow

1

Motion

In many applications it is the case that

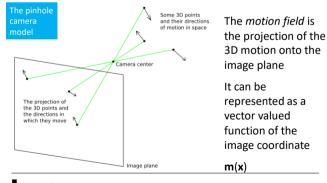
- the scene depicted in the image is dynamic
 - moving objects
 - deformable objects
- or the camera is moving relative to the scene
- in general: both cases

2

3

Motion

- From the camera's (viewer's) perspective these two cases are indistinguishable
 - Unless a high-level interpretation of the scene is available
- However, we can describe how points in the scene move relative to some reference frame, e.g., as defined by the camera



The motion field

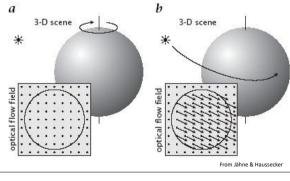
• If we can measure the motion field **m**(**x**) it is possible to infer

5

- how points and objects are moving relative the camera, or
- how the camera is moving relative to the scene (*ego-motion* estimation)

5

Physical vs visual motion



The motion field

- In practice, we cannot measure **m**(**x**) directly
- However, we can measure how the image intensity moves/varies over time
 - Optical flow Will be formally defined shortly
- But there is no direct relation between the optical flow and the motion field
 - 3D motion may not always generate temporal variations in the image
 - 3D points that move along the projection lines have constant positions in the image
 - Temporal variations in the image may not always correspond to 3D motion

6

Displacement estimation

- One approach to motion estimation considers two images of the same scene, e.g.
 - Taken at two different time points, same camera position
 - Images from a video sequence, e.g., two consecutive images. Displacement is an estimate of the motion field **m**(**x**)
 - Taken from two different position, possibly at the same time point
 - Stereo images. Displacement is an estimate of depth in the scene (assuming a stationary scene)

12

Example (from *Middlebury*)

9

11

9

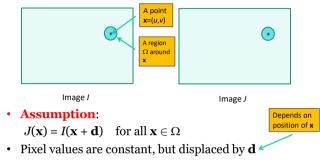
Estimation of **d**

• **d**, at point **x**, can be estimated by forming a cost function, based on the constancy of the pixel values:

$$\epsilon = \int_{\substack{\Omega_0 \\ \uparrow}} w(\mathbf{y}) \left(I(\mathbf{x} + \mathbf{y} + \mathbf{d}) - J(\mathbf{x} + \mathbf{y}) \right)^2 \, d\mathbf{y}$$
A region of the origin, same size as Ω
A weighting function, e.g., a Gaussian, of same size as Ω

The minimizer of *ε* is an estimate of **d** at **x**, which we then use as an estimate of **m**(**x**)

Mathematical model



• How can we determine **d** for each point **x**?

10

Estimation of **d**

- As an estimate of m(x), d(x) is referred to as *optic flow* (or optical flow)
- Finding the minimizer of ϵ is a non-linear estimation problem
 - Computationally complex problem
- It can be simplified by a linearization of *I*

16

Linearization of I

 At each point **x**+**y**, the dependency on **d** in the intensity function *I* can be expressed as a Taylor expansion:

$$\nabla I(\mathbf{x} + \mathbf{y}) = \begin{pmatrix} \frac{\partial I}{\partial u} \\ \frac{\partial I}{\partial v} \end{pmatrix} = \text{Image gradient at } \mathbf{x} + \mathbf{y}$$
$$I(\mathbf{x} + \mathbf{y} + \mathbf{d}) = I(\mathbf{x} + \mathbf{y}) + \nabla I(\mathbf{x} + \mathbf{y}) \cdot \mathbf{d}$$

13

15

• **Assumption**: higher order terms in **d** can be neglected

13

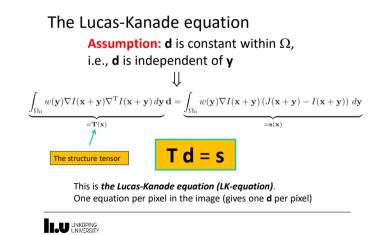
Determining d

Linear estimation of ${\bf d}$

With this linearlization of *I* at hand:

$$\epsilon = \int_{\Omega_0} w(\mathbf{y}) \left(I(\mathbf{x} + \mathbf{y}) - J(\mathbf{x} + \mathbf{y}) + \nabla I(\mathbf{x} + \mathbf{y}) \cdot \mathbf{d} \right)^2 \, d\mathbf{y}$$
Equation (A)
$$\frac{\partial I}{\partial u} v_1 + \frac{\partial I}{\partial v} v_2$$

- We want to find the minimum of ϵ with respect to the elements of **d** = (v_1, v_2)
- Find **d** where $\begin{pmatrix} \frac{\partial \epsilon}{\partial v_1} \\ \frac{\partial \epsilon}{\partial u_2} \end{pmatrix} = \mathbf{0}$



20

Determining **d**

• In principle, **d** can be determined from the LK-equation as

17

19

- Only works if **T** is not singular, i.e., *I* in Ω **must not be i1D**
- Lucas & Kanade: An Iterative Image Registration Technique with an Application to Stereo Vision, IUW, 1981

17

Brightness constancy

- Think of the intensity function *I* as explicitly depending on the 3 variables (*u*, *v*, *t*)
- Basic assumption:
 - If we observe intensity *I* at (*u*, *v*, *t*), this intensity remains constant over time, but it may change position as a function of time
- This is referred to as: *brightness constancy*

Alternative derivation of LK

- The LK-equation derived here is based on finding the local displacement between two images
- An alternative derivation is provided by the brightness constancy principle

18

Mathematical formulation

Means: the total derivative of I w.r.t. t is = 0

$$\frac{dI}{dt} = 0$$

Expand in partial derivatives of *I*:

$$\frac{\partial I}{\partial t}\frac{dt}{dt} + \frac{\partial I}{\partial u}\frac{du}{dt} + \frac{\partial I}{\partial v}\frac{dv}{dt} = 0$$

24

Mathematical formulation

Cont.

$$\frac{\partial I}{\partial t}\underbrace{\frac{dt}{dt}}_{=1} + \frac{\partial I}{\partial u}\underbrace{\frac{du}{dt}}_{=v_1} + \frac{\partial I}{\partial v}\underbrace{\frac{dv}{dt}}_{=v_2} = 0$$

21

23

- **v** = (v₁, v₂) is the velocity vector of the intensity *I* at (*u*, *v*, *t*)
- **v** is a function of (u, v, t), **v** = **v**(**x**)
- Local estimate of the motion field **m**(**x**)

21

BCCE

- Is a differential equation
- It assumes that we can determine/estimate the temporal derivative of I at (*u*, *v*, *t*)
 - In practice, it must be estimated in terms of finite differences
 - Compare to the two-image derivation of the LK-eq
- BCCE is one equation per pixel (and time)
 - But it has 2 unknowns: (v_1, v_2)
 - Cannot be solved at the pixel level

BCCE / Optic flow equation

Cont.
$$\frac{\partial I}{\partial t} + \frac{\partial I}{\partial u}v_1 + \frac{\partial I}{\partial v}v_2 = 0$$

Alternative
formulation: $\frac{\partial I}{\partial t} + \nabla I \cdot \mathbf{v} = 0$

- This is the Brightness Constancy Constraint Equation (BCCE)
- A.k.a. the optic (optical) flow equation

22

Determining v

• At a pixel $\mathbf{x} = (u, v)$, at time *t*, we can formulate a cost function

$$\epsilon = \int_{\Omega_0} w(\mathbf{y}) \left(\frac{\partial I}{\partial t} + \nabla I(\mathbf{x} + \mathbf{y}) \cdot \mathbf{v} \right)^2 \, d\mathbf{y}$$

- Assumes that ${\bf v}$ is constant within Ω
- This cost function is very similar to the one used for the 2-image case, Equation (A), slide 14

26

28

LK-equation, again...

• Minimizing ϵ , therefore, implies finding **v** such that

25

27

• Where $\mathbf{T}(\mathbf{x}) = \int_{\Omega_0} w(\mathbf{y}) \nabla I(\mathbf{x} + \mathbf{y}) \nabla^{\mathrm{T}} I(\mathbf{x} + \mathbf{y}) d\mathbf{y}$ $\mathbf{s}(\mathbf{x}) = -\int_{\Omega_0} w(\mathbf{y}) \frac{\partial I}{\partial t} \nabla I(\mathbf{x} + \mathbf{y}) d\mathbf{y}$

25

The aperture problem

- Is the pattern in the circle moving down, right, or right-down?
- Since the pattern is i1D, its velocity cannot be completely determined
- We can, however, determine a unique *normal velocity*
 - -How?

The aperture problem

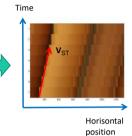
- Regardless of how the LK-eq has been derived, it cannot be solved robustly for pixels where *I* in Ω is i1D
- · Even approximately i1D may cause problems
- This is related to the so-called aperture problem:
 - In a i1D region we cannot determine the local displacement/velocity along a line/edge

26

BCCE revisited

- A consequence of BCCE: In the 3D spatio-temporal volume, *I* must be constant in a direction given by $\mathbf{v}_{ST} = (v_1, v_2, 1)$
- This implies that $\nabla_{ST}I$, the 3D spatio-temporal gradient of *I*, is orthogonal to \mathbf{v}_{ST}

Example



29

31

29

Spatio-temporal motion vector

- v̂_{S⊤} (and v_{s⊤}) is called the *spatio-temporal* motion vector (it is 3-dimensional)
- ∇_{ST}*I* is the spatio-temporal gradient of *I* (also 3dimensional)
- We will minimize \mathcal{E}_{ST} over $\widehat{v}_{ST},$ with the additional constraint

$$\|\hat{\mathbf{v}}_{\mathsf{ST}}\| = 1$$

- This is a *total least squares* formulation of how to determine $\mathbf{v}(\mathbf{x})$

Lecture 4

JANUARY 30, 2019 30

32

A new cost function

• We define a new cost function ε_{ST} as

$$\epsilon_{\rm ST} = \int_{\Omega_0} w(\mathbf{y}) \left(\hat{\mathbf{v}}_{\rm ST}^{\rm T} \nabla_{\rm ST} I \right)^2 \, d\mathbf{y}$$

where

$$\hat{\mathbf{v}}_{\mathrm{ST}} = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix}, \quad \|\hat{\mathbf{v}}_{\mathrm{ST}}\| = 1, \quad \nabla_{\mathrm{ST}}I = \begin{pmatrix} \frac{\partial I}{\partial x_1} \\ \frac{\partial I}{\partial x_2} \\ \frac{\partial I}{\partial x_3} \end{pmatrix}$$

30

Finding the minimum of \mathcal{E}_{ST}

• The constraint can be expressed as

$$c = \|\hat{\mathbf{v}}_{\mathsf{ST}}\|^2 = r_1^2 + r_2^2 + r_3^2 = 1$$

• The solution is given by $\hat{v}_{ST} = (r_1, r_2, r_3)$ that satisfies

$$\frac{\partial}{\partial r_k} \varepsilon = \lambda \, \frac{\partial}{\partial r_k} \, c$$

for *k* = 1, 2, 3 (why?)

36

The 3D structure tensor revisited

• These 3 equations can be rewritten as

$$\left[\int_{\Omega} w(\mathbf{x}) \nabla_{ST} I \nabla_{ST}^{T} I \, d\mathbf{x}\right] \, \hat{\mathbf{v}}_{ST} = \lambda \, \hat{\mathbf{v}}_{ST}$$
(why?)

33

35

• Note that the expression inside the bracket is a 3D structure tensor!

33

The 3D structure tensor revisited

Once \$\hat{v}_{ST}\$ = (r₁, r₂, r₃) has been determined we can find \$\mathbf{v}_{ST}\$ that is

– Parallel to $\, \widehat{v}_{\mathsf{S}\mathsf{T}} \,$

- Has its last component = 1
- The first two components of \mathbf{v}_{ST} are the motion vector $\mathbf{v} = (v_1, v_2)$

$$v_1 = \frac{r_1}{r_3}$$
 $v_2 = \frac{r_2}{r_3}$

The 3D structure tensor revisited

• We rewrite this as

 $\mathbf{T}_{\mathsf{3D}}\,\hat{\mathbf{v}}_{ST} = \lambda\,\hat{\mathbf{v}}_{ST}$

- This means that the \hat{v}_{ST} which minimizes ε must be an eigenvector of T_{3D}
- It should also be normalized: $\|\hat{v}_{\mathsf{ST}}\| = 1$
- The eigenvector that minimizes *ε* is the one of smallest eigenvalue (why?)

34

Summary

- We now have 2 alternatives to local motion estimation based on BCCE:
- 1. least squares minimization (based on \mathbf{T}_{2D} and \mathbf{s})
- 2. total least squares minimization (based on T_{3D})

40

Summary: Least squares minimization

• Minimize

$$\varepsilon_{ST} = \int_{\Omega} w(\mathbf{x}) \left[\mathbf{v}_{ST} \cdot \nabla_3 I \right]^2 d\mathbf{x}$$

37

39

where $\mathbf{v}_{\text{ST}} = (v_1, v_2, 1)$ over the motion components $\mathbf{v} = (v_1, v_2)$

- Find **v** by solving \mathbf{T}_{2D} **v** = **s**
- We can see \boldsymbol{v}_{ST} as a homogeneous representation of \boldsymbol{v}

37

The 3D tensor

In the 3D case, we compute a structure tensor T_{3D}, a symmetric 3 × 3 matrix, that can be decomposed as (the spectral theorem)

 $\mathbf{T}_{3\mathsf{D}} = \lambda_1 \,\hat{\mathbf{e}}_1 \,\hat{\mathbf{e}}_1^T + \lambda_2 \,\hat{\mathbf{e}}_2 \,\hat{\mathbf{e}}_2^T + \lambda_3 \,\hat{\mathbf{e}}_3 \,\hat{\mathbf{e}}_3^T$

where $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq 0$ are the eigenvalues of \mathbf{T}_{3D} and $\mathbf{\hat{e}}_k$ are the corresponding eigenvectors (an orthonormal set)

Summary: Total least squares minimization

Minimize

$$\varepsilon_{ST} = \int_{\Omega} w(\mathbf{x}) \left[\hat{\mathbf{v}}_{ST} \cdot \nabla_3 I \right]^2 d\mathbf{x}$$

over all components of $\hat{v}_{ST} = (r_1, r_2, r_3)$ and with the constraint $\|\hat{v}_{ST}\| = 1$

- Find $\, \hat{v}_{S\top} \,$ as the eigenvector of smallest eigenvalue with respect to $T_{_{3D}}$

• Find **v** from
$$\hat{\mathbf{v}}_{\mathsf{ST}}$$
 as $v_1 = \frac{r_1}{r_3}$ $v_2 = \frac{r_2}{r_3}$

38

The 3D structure tensor

- In general (*not only in the case of motion*) we can distinguish between three cases of the local 3D signal
 - The signal is constant on parallel planes (i1D)
 - The signal is constant on parallel lines (i2D)
 - The signal is isotropic
- Remember that ${\bf T}$ is formed as

$$\mathbf{T}(\mathbf{x}) = \int_{\Omega_0} w(\mathbf{y}) \nabla I(\mathbf{x} + \mathbf{y}) \nabla^{\mathrm{T}} I(\mathbf{x} + \mathbf{y}) \, d\mathbf{y}$$

44

The signal is constant on parallel planes

- (Case 1) The 3D signal is i1D
 - The gradient $\nabla_3 I$ is always parallel to the normal vector of the planes

$$\mathbf{T} = \lambda_1 \, \hat{\mathbf{e}}_1 \, \hat{\mathbf{e}}_1^T$$

(Lasagna)

41

43

- T has rank 1
- $\boldsymbol{\hat{e}}_{\scriptscriptstyle 1}$ is a normal vector to the planes
- A moving 2D line generates a 3D signal that is i1D \Rightarrow T has rank 1

41

- The signal is constant on parallel lines (Spaghetti)
- (Case 2) The 3D signal is intrinsic 2D (i2D)
 - The gradient $\nabla_3 I$ is always perpendicular to the direction $\hat{\mathbf{e}}_3$ of the lines

 $\mathbf{T} = \lambda_1 \,\hat{\mathbf{e}}_1 \,\hat{\mathbf{e}}_1^T + \lambda_2 \,\hat{\mathbf{e}}_2 \,\hat{\mathbf{e}}_2^T$

- $-\hat{\mathbf{e}}_3$ is an eigenvector of eigenvalue 0 relative to T
- **T** has rank 2
- A moving point generates a 3D signal that is i2D \Rightarrow T has rank 2

The signal is constant on parallel planes

 In this case, the Fourier transform of *I* is concentrated along a line through the origin, in the direction of ê₁

42

The signal is constant on parallel lines

- In this case, the Fourier transform of *I* is concentrated to a plane through the origin, that has ê₃ as its normal vector
- In other words, the plane is spanned by $\boldsymbol{\hat{e}}_{_1}$ and $\boldsymbol{\hat{e}}_{_2}$

48

The signal is isotropic (Dumpling)

45

47

- (Case 3) The signal varies uniformly in all directions
 - The gradient $\nabla_3 I$ is not restricted to some subspace

$\mathbf{T} = \lambda_1 \, \hat{\mathbf{e}}_1 \, \hat{\mathbf{e}}_1^T + \lambda_2 \, \hat{\mathbf{e}}_2 \, \hat{\mathbf{e}}_2^T + \lambda_3 \, \hat{\mathbf{e}}_3 \, \hat{\mathbf{e}}_3^T$

where λ_1 , λ_2 and λ_3 all are $\neq 0$.

- T has rank 3
- Not consistent the BCCE

45

Confidence measures

• As confidence measures for the three cases we can use, *for example*:

$$c_{1} = \frac{\lambda_{1} - \lambda_{2}}{\lambda_{1}} \qquad {}^{\text{Case 1}}$$

$$c_{2} = \frac{\lambda_{2} - \lambda_{3}}{\lambda_{1}} \qquad {}^{\text{Case 2}}$$

$$c_{3} = \frac{\lambda_{3}}{\lambda_{1}} \qquad {}^{\text{Case 3}}$$

The signal is isotropic

- In the isotropic case, variations in all directions are uniformly distributed
- Implies that $\lambda_1 = \lambda_2 = \lambda_3 = \lambda$
- We can write $\mathbf{T} = \lambda \mathbf{I}$ (**I** is the identity tensor)
- The Fourier transform of the signal extends into all 3 dimensions

46

Confidence measures

- They satisfy $c_1 + c_2 + c_3 = 1$.
- Furthermore
 - $-i1D\text{-signal} \Rightarrow \mathbf{T} \text{ has rank } 1 \Rightarrow$ $\lambda_1 > 0, \lambda_2 = \lambda_3 = 0 \Rightarrow c_1 = 1, c_2 = c_3 = 0.$ $-i2D\text{-signal} \Rightarrow \mathbf{T} \text{ has rank } 2 \Rightarrow$
 - $\lambda_1 \ge \lambda_2 > 0, \lambda_3 = 0 \Rightarrow c_2 \neq 0, c_3 = 0.$
 - Isotropic signal \Rightarrow **T** has rank 3 \Rightarrow c₃ \neq 0.

52

Decomposing T

• Based on these confidence measures, **T** can be decomposed as

$$\begin{split} \mathbf{T} &= \lambda_1 \, \hat{\mathbf{e}}_1 \, \hat{\mathbf{e}}_1^T + \lambda_2 \, \hat{\mathbf{e}}_2 \, \hat{\mathbf{e}}_2^T + \lambda_3 \, \hat{\mathbf{e}}_3 \, \hat{\mathbf{e}}_3^T \\ &= (\lambda_1 - \lambda_2) \, \hat{\mathbf{e}}_1 \, \hat{\mathbf{e}}_1^T + \\ &+ (\lambda_2 - \lambda_3) \, (\hat{\mathbf{e}}_1 \, \hat{\mathbf{e}}_1^T + \hat{\mathbf{e}}_2 \, \hat{\mathbf{e}}_2^T) + \\ &+ \lambda_3 \, (\hat{\mathbf{e}}_1 \, \hat{\mathbf{e}}_1^T + \hat{\mathbf{e}}_2 \, \hat{\mathbf{e}}_2^T + \hat{\mathbf{e}}_3 \, \hat{\mathbf{e}}_3^T) \\ &= \lambda_1 \, [c_1 \, \mathrm{T_{rang1}} + c_2 \, \mathrm{T_{rang2}} + c_3 \, \mathrm{I}] \end{split}$$

49

51

49

Summary

- The rank of **T** equals the dimension of its range
- The range represent the dimensions in the Fourier domain where there is energy
- We can define confidence measures (in various ways) that indicate which rank or case that **T** represents
- In general, **T** can be a combination of the different cases

Summary

- Given a local picture of the signal:
 - The directions along which the signal is constant correspond to the null space of ${\bf T}$
 - T has a range that is orthogonal to this null space
 - In the Fourier domain: the energy is concentrated to the range of ${\bf T}$

50

Computation of the motion vector (rank 2)

- At each point (*x*₁, *x*₂, *t*) we can estimate the local 3D structure tensor **T**
- If **T** has rank 2 it corresponds to a non-i1D signal in the 2D image
- Since **T** has rank 2 we can "uniquely" determine an eigenvector of smallest eigenvalue:

$$\hat{\mathbf{v}}_{\mathsf{ST}} = (r_1 \ r_2 \ r_3)$$

56

Computation of the motion vector (rank 2)

53

55

• From the previous derivations we know that

$$\hat{\mathbf{v}}_{\mathsf{ST}} \sim \mathbf{v}_{\mathsf{ST}} = (v_1 \, v_2 \, 1)$$

• Consequently, we can compute the motion components as

$$v_1 = \frac{r_1}{r_3}$$
 $v_2 = \frac{r_2}{r_3}$

53

Computation of the motion vector (rank 1)

- However, in this case we can determine the *normal motion* of the 2D-signal
- Let **p**=(p_1 , p_2 , p_3) be an eigenvector of largest eigenvalue relative to **T**

Computation of the motion vector (rank 1)

- If **T** has rank 1 it means that the corresponding 2D-signal is i1D
 - A moving line or edge
- The null space of **T** is 2-dimensional
- We cannot uniquely determine $\mathbf{v}_{\text{ST}},$ and therefore \mathbf{v} cannot be uniquely determined
- Related to the aperture problem

54

Computation of the motion vector (rank 1)

– The spatio-temporal normal motion vector \mathbf{v}_{ST} must satisfy

$$\mathbf{v}_{ST} = 0$$

$$\mathbf{v}_{T} = 0$$

$$\mathbf{v}_{T} = (v_{1}) + p_{2}v_{2} + p_{3} = 0$$

$$\mathbf{v}_{T} = (v_{1}) + k = k \left(\begin{array}{c} p_{1} \\ p_{2} \end{array} \right)$$

$$\mathbf{v}_{T} = (v_{1}) + k \left(\begin{array}{c} p_{1} \\ p_{2} \end{array} \right)$$

$$\mathbf{v}_{T} = (v_{1}) + k \left(\begin{array}{c} p_{1} \\ p_{2} \end{array} \right)$$

$$\mathbf{v}_{T} = (v_{1}) + k \left(\begin{array}{c} p_{1} \\ p_{2} \end{array} \right)$$

Computation of the motion vector (rank 1)

57

59

• From these two relations, the normal motion is given as

$$\mathbf{v}_{\text{norm}} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = -\frac{p_3}{p_1^2 + p_2^2} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$$

Computation of the motion vector (rank 3)

• Finally, if **T** has rank 3 this implies that the local signal does not satisfy the conditions expressed in BCCE. (why?)

58

57

A strategy for motion estimation

- Compute the 3D tensor T₃
- Determine its eigenvalues
- Classify the tensor into each of the three cases, based on some confidence measures (how?)
- If rank 1: compute the normal motion
- If rank 2: compute the "true" motion
- If rank 3: no motion can be determined