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Variational Methods
Computer Vision, Lecture 15
Michael Felsberg
Computer Vision Laboratory
Department of Electrical Engineering

Optimization: Overview

Function
Output (codomain / 

target set)

Set Continuous Discrete

Input (domain 
of definition)

Continuous Lecture 15 Lecture 15

Discrete Lecture 13 Lecture 13

ex: diffusion
ex: level-set
segmentering
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Diffusion: Evolution Equation

• Diffusion is an evolution process starting from the 

original image.

• Can diffusion be related to the iterations in an 

optimization process?

• Discrete steps: gradient descent steps (forward 

Newton scheme) on an objective function. 

• But: the unknown is a function!

• Stationarity condition for the solution obtained by 

variational calculus from the objective function.
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Variational Methods

• Minimize the local integral of a Lagrange 

function 

• gives the Euler-Lagrange equation on Ω

• if we require
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Insight: EL Equation

• for all test functions g, the Gâteaux derivative

must vanish (scalar product in function space)

• Inserting the Lagrangian gives

• Note 
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Insight: EL Equation

• use homogenity of Green's first identity

to obtain

to rewrite

• Thus

• and we obtain the necessary condition (for all x)
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Linear Regularization

• Minimizing

i.e. no data term 

• Gives the Euler-Lagrange equation 

(note: )

• Such that gradient descent gives

or continuous formulation

• Converges towards trivial solution
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Non-Linear Regularization

• Minimizing

special case:

• Gives the Euler-Lagrange equation

• Such that gradient descent gives
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Exemple: Perona-Malik Flow
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• Special cases:

• Such that gradient descent gives Perona-Malik Flow

Interpretation

• Diffusion is an evolution over "time" s

• Starts at the measured image

• Converges towards DC signal

• Critical parameter 1: "stopping time"

• Critical parameter 2: 

• Several examples in the enhancement lecture
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Beyond Diffusion

• In what follows: add data term to minimization 

problem

• Converges towards non-trivial solution

• Optimization with standard forward Euler scheme
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Linear Restoration

• Minimizing

• Gives the Euler-Lagrange equation

• Such that gradient descent gives
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Non-Linear Restoration

• Minimizing

• Gives the Euler-Lagrange equation

• Such that gradient descent gives
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Special Case: TV/ROF

• Minimizing

• Gives the Euler-Lagrange equation

• Such that gradient descent gives
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Example (lecture 13)

• Paramters:    =0.0005,   =0.5, noise(0,0.001)
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Explicit vs Implicit

• All gradients so far are based on the previous 

estimate: the time discretization leads to an explicit 

scheme (least calculations, easiest)

• If the gradients are based on the new estimate, we 

obtain an implicit scheme (always stable, large time 

steps)

• If the gradients are based on both, we obtain the 

Crank-Nicolson scheme (always stable, small time 

steps)
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Interpretation

• Restoration adds a data term

• Uses the measured image as input in each iteration

• Converges towards non-trivial solution

• Critical parameter 1: "meta" parameter 

• Critical parameter 2: 
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Beyond Restoration

• Data term can be used to describe the measurement 

model

• Degradation (blurring, noise, etc)

• Data term modality differs from modality of estimated 

term, e.g. image data is measured but

– Optical flow

– Segmentation map

are to be estimated
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Deblurring

• Minimizing

• Gives the Euler-Lagrange equation

• Such that gradient descent gives
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Comments

• g: point spread function (PSF)

• g(-x): correlation operator / adjoint operator

• even symmetry PSF: self adjoint

• definition of adjoint operator

• Example from lecture 13
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Demonstration

21

Optical Flow

• Minimizing

• Gives the Euler-Lagrange equation (HS!)

• Laplacian is approximately 

BCCE

1 1 1 - 3 · 0 1 0 = 1 -2 1
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Optical Flow

• Plugging into the EL-equation gives

• Explicitly solving for f results in
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Optical Flow

• Iterating the solution

• Results in the Horn & Schunck iteration

• Significant improvement: use median instead of    !
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Demonstration

25

Segmentation / Contours

• Segmentation function (level-set function) to be 

optimized

• Negative / positive in background / object region

• Contour is the zero-level
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Segmentation / Contours

• Chan-Vese energy minimized of level-set function ϕ

• H is the (regularized) Heaviside function

• f are weights computed from the image (e.g. squared 

deviation from certain greyscale)

• EL equation

• Problem: (regularized) delta function δ
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Segmentation / Contours

• Omitting delta-function

• Original solution remains solution

• Corresponds to minimizing

• Non-existence of minimizer (!)

28

25 26

27 28



4/4/2019

8

Segmentation / Contours

• Binary function instead of level-set function

• becomes Ising model

• Hard to solve – use relaxation

– Binary function replaced by smooth approximation

– After optimization apply threshold

• Discrete optimization (lecture 13) 
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Examples

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/CREMERS2/
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Demonstration
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Alternative Contour Methods

• Popular application:  

– Geodesic active contours

– Snakes

• Contour parametrized as

• Usually approximated as spline

• Option: Fourier descriptors
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Geodesic Active Contours

• Consider a curve moving in time

• let the curve develop according to the inward normal 

n and the curvature c
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Geodesic Active Contours

• Assume level set function

such that

• Negative inside and positive outside gives

• Plug in normal into evolution equation gives
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Geodesic Active Contours

• What remains is to re-write l.h.s. of

• Time derivative of                    gives

• Such that

• Level-set equation
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Over-Segmentation / Superpixels

• So far: attempt for semantic segmentation

• Alternative: over-segmentation based on stationarity

of image process

– MSER (lecture 8) 

– Superpixel algorithms –

clustering in 5D (x,y,R,G,B)

– Left: contour-relaxed

superpixels

– Right: SLIC
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