TSBB15 Computer Vision

Lecture 3
The structure tensor

Estimation of local orientation

- A very simple description of local orientation at image point $\mathbf{p}=(u, v)$ is given by:

$$
\hat{\mathbf{n}}= \pm \frac{\nabla I}{\|\nabla I\|}
$$

- Here, ∇I is the gradient at point \mathbf{p} of the image intensity I. In practice:

$$
\nabla I=\binom{\frac{\partial}{\partial u}}{\frac{\partial}{\partial v}}\left(w_{1} * I\right)
$$

Estimation of local orientation

- Problem 1: ∇ I may be zero, even though there is a well defined orientation.
- Problem 2: The sign of $\nabla /$ changes across a line.

Estimation of local orientation

- Partial solution:
- Form the outer product of the gradient with itself: $\nabla / \nabla \top /$.
- This is a symmetric 2×2 matrix (tensor)
- Problem 2 solved!
- Also: The representation is unambiguous
- Distinct orientations are mapped to distinct matrices
- Similar orientations are mapped to similar matrices
- Continuity / compatibility
- Problem 1 remains

The structure tensor

- Compute a local average of the outer product of the gradients around the point \mathbf{p} :

$$
\mathbf{T}(\mathbf{p})=\int w_{2}(\mathbf{x})[\nabla I](\mathbf{x})\left[\nabla^{\mathrm{T}} I\right](\mathbf{x}) d \mathbf{x}
$$

- Here, \mathbf{x} represent an offset from \mathbf{p}
- $w_{2}(\mathbf{x})$ is some LP-filter (typically a Gaussian)
- T is a symmetric 2×2 matrix: $T_{i j}=T_{j i}$
- This construction is called the structure tensor
- Solves also problem 1 (why?)
- \mathbf{T} is computed for each point \mathbf{p} in the image

Orientation representation

- For a signal that is approximately i1D in the neighborhood of a point \mathbf{p}, with orientation $\pm \mathbf{n}$: ∇l is always parallel to \mathbf{n} (why?)
- The gradients that are estimated around \mathbf{p} are a scalar multiple of \mathbf{n}
- The average of their outer products results in

$$
\mathbf{T}=\lambda \mathbf{n n}^{\top}
$$

- for some value λ
- λ depends on w_{1}, w_{2}, and the local signal I

Motivation for \mathbf{T}

- The structure tensor has been derived based on several independent approaches
For example
- Stereo tracking (Lucas \& Kanade, 1981) (Lec. 5)
- Optimal orientation (Bigün \& Granlund, 1987)
- Sub-pixel refinement (Förstner \& Gülch, 1987)
- Interest point detection (Harris \& Stephens, 1988)

Local orientation in the Fourier domain

- Structures of different orientation end up in different places in the frequency domain

Spatial domain

Optimal orientation estimation

- Basic idea:
- The local signal I(x) has a Fourier transform $F(\mathbf{u})$.
- We assume that f is a i1D-signal
- F has its energy concentrated mainly on a line through the origin
- Find a line, with direction \mathbf{n}, in the frequency domain that best fits the energy of F
- Described by Bigün \& Granlund [ICCV 1987]

Optimal orientation estimation

- The solution to this constrained maximization problem must satisfy

$$
\mathbf{T} \hat{\mathbf{n}}=\lambda \hat{\mathbf{n}}
$$

- Means: \mathbf{n} is an eigenvector of \mathbf{T} with eigenvalue λ
- In fact: Choose the eigenvector with the largest eigenvalue for best fit

Sub-pixel refinement

- Consider a local region and let $\nabla /(\mathbf{p})$ denote the image gradient at point \mathbf{p} in this region
- Let \mathbf{p}_{0} be some point in this region
- $\left\langle\nabla /(\mathbf{p}) \mid \mathbf{p}-\mathbf{p}_{0}\right\rangle i$ is then a measure of compatibility between the gradient $\nabla I(\mathbf{p})$ and the point \mathbf{p}_{0}
- Small value = high compatibility
- High value = small compatibility

```
A p
that creates the gradient
minimizes
|||/(p)|p- po \rangle|
```


Sub-pixel refinement

- In the case of more than one line/edge in the local region:

- We want to find the point \mathbf{p}_{0} that optimally fits all these lines/edges
- We minimize

$$
\epsilon\left(\mathbf{p}_{0}\right)=\left\|\left\langle\nabla I(\mathbf{p}) \mid \mathbf{p}-\mathbf{p}_{0}\right\rangle\right\|_{w}^{2}
$$

- where w is a weighting function that defines the local region

Sub-pixel refinement

- The normal equations of this least squares problem are:

The Harris-Stephens detector

- A Taylor expansion of the image intensity I at point (u, v):

$$
\begin{aligned}
I\left(u+n_{u}, v+n_{v}\right) & \approx I(u, v)+\nabla I \cdot\left(n_{u}, n_{v}\right) \\
& \approx I(u, v)+\nabla I \cdot \mathbf{n}
\end{aligned}
$$

The Harris-Stephens detector

- $S\left(n_{u}, n_{v}\right)$ is a measure of how much $I(u, v)$ deviates from $I\left(u+n_{u}, v+n_{v}\right)$ in a local region Ω, as a function of $\left(n_{u}, n_{v}\right)$:
$S\left(n_{u}, n_{v}\right)=\left\|I\left(u+n_{u}, v+n_{v}\right)-I(u, v)\right\|^{2}$

$$
\begin{aligned}
& =\int_{\Omega} w(u, v) \cdot\left|I\left(u+n_{u}, v+n_{v}\right)-I(u, v)\right|^{2} d u d v \\
& \approx \int_{\Omega} w(u, v) \cdot(\nabla I \cdot \mathbf{n})^{2} d u d v \\
& =\mathbf{n}^{\mathrm{T}} \underbrace{\left[\int_{\Omega} w(u, v) \cdot\left(\nabla I \nabla^{\mathrm{T}} I\right) d u d v\right]}_{:=\mathbf{T}} \mathbf{n}=\mathbf{n}^{\mathrm{T}} \mathbf{T \mathbf { n }}
\end{aligned}
$$

The Harris-Stephens detector

- If Ω contains a linear structure, then S is small (=0) when \mathbf{n} is parallel to the line/edge
- T must have one small (≈ 0) eigenvalue
- If Ω contains an interest point (corner) any displacement $\left(n_{u}, n_{v}\right)$ gives a relatively large S
- Both eigenvalues of \mathbf{T} must be relatively large
- By analyzing the eigenvalues λ_{1}, λ_{2} of \mathbf{T} :
- If λ_{1} large and λ_{2} small: line/edge
- If both λ_{1} and λ_{2} large: interest point
- See Harris measure below

Example: Structure tensor

Original image

Example: Structure tensor

$f_{x} \quad$ Gradient images
f_{y}

Example: Structure tensor

Example: Structure tensor

Example: Structure tensor

Before
averaging
T_{12} image

Example: Structure tensor in 2D

- In the general 2D case, we obtain

$$
\mathbf{T}=\lambda_{1} \widehat{\mathbf{e}}_{1} \widehat{\mathbf{e}}_{1}^{T}+\lambda_{2} \widehat{\mathbf{e}}_{2} \widehat{\mathbf{e}}_{2}^{T}
$$

- where $\lambda_{1} \geq \lambda_{2}$ are the eigenvalues of \mathbf{T} and $\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}$ are the corresponding normalized eigenvectors
- We have already shown that for locally i1D signals we get $\lambda_{1} \geq 0$ and $\lambda_{2}=0$

Structure tensor in 2D, iOD

- If the local signal is constant (iOD), then $\nabla I=0$
- Consequently: $\mathbf{T}=0$
- Consequently: $\lambda_{1}=\lambda_{2}=0$
- The idea of optimal orientation becomes less relevant the closer λ_{1} gets to 0

Structure tensor in 2D, i2D

- If the local signal is $22 \mathrm{D}, \nabla \mathrm{I}$ is not parallel to some \mathbf{n} for all points \mathbf{x} in the local region, i.e. the terms in the integral that forms \mathbf{T} are not scalar multiples of each other
- Consequently: $\lambda_{2}>0$ if f not i1D
- The idea of optimal orientation becomes less relevant the closer λ_{2} gets to λ_{1}

Isotropic tensor

- If we assume that the orientation is uniformly distributed in the local integration support, we get $\lambda_{1} \approx \lambda_{2}$:

$$
\begin{aligned}
\mathbf{T} & =\lambda_{1} \widehat{\mathbf{e}}_{1} \widehat{\mathbf{e}}_{1}^{T}+\lambda_{1} \widehat{\mathbf{e}}_{2} \widehat{\mathbf{e}}_{2}^{T} \\
& =\lambda_{1}\left(\widehat{\mathbf{e}}_{1} \widehat{\mathbf{e}}_{1}^{T}+\widehat{\mathbf{e}}_{2} \widehat{\mathbf{e}}_{2}^{T}\right) \\
& =\lambda_{1} \mathbf{I}
\end{aligned}
$$

- i.e. \mathbf{T} is isotropic: $\mathbf{n}^{\top} \mathbf{T} \mathbf{n}=\mathbf{n}^{\top} \mathbf{I} \mathbf{n}=1$
- Why is the parenthesis equal to I ?

Confidence measures

- From det T and tr T we can define two confidence measures:

$$
c_{1}=\frac{\operatorname{tr}^{2} \mathbf{T}-4 \operatorname{det} \mathbf{T}}{\operatorname{tr}^{2} \mathbf{T}-2 \operatorname{det} \mathbf{T}} \quad c_{2}=\frac{2 \operatorname{det} \mathbf{T}}{\operatorname{tr}^{2} \mathbf{T}-2 \operatorname{det} \mathbf{T}}
$$

Confidence measures

- Using the identities

$$
\begin{aligned}
& -\operatorname{tr} \mathbf{T}=T_{11}+T_{22}=\lambda_{1}+\lambda_{2} \\
& -\operatorname{det} \mathbf{T}=T_{11} \mathrm{~T}_{22}-T_{12}^{2}=\lambda_{1} \lambda_{2}
\end{aligned}
$$

- we obtain

$$
\begin{aligned}
& c_{1}=\frac{\left(\lambda_{1}-\lambda_{2}\right)^{2}}{\lambda_{1}^{2}+\lambda_{2}^{2}} \quad c_{2}=\frac{2 \lambda_{1} \lambda_{2}}{\lambda_{1}^{2}+\lambda_{2}^{2}} \\
& \text { and } c_{1}+c_{2}=1 \quad \text { (why?) }
\end{aligned}
$$

Confidence measures

- Easy to see that
- i1D signals give $c_{1}=1$ and $c_{2}=0$
- Isotropic \mathbf{T} gives $c_{1}=0$ and $c_{2}=1$
- In general: an image region is somewhere between these two ideal cases
- An advantage of these measures is that they can be computed from \mathbf{T} without explicitly computing the eigenvalues λ_{1} and λ_{2}

Decomposition of T

- We can always decompose \mathbf{T} into an i1D part and an isotropic part:

$$
\begin{aligned}
\mathbf{T} & =\lambda_{1} \widehat{\mathbf{e}}_{1} \widehat{\mathbf{e}}_{1}^{T}+\lambda_{2} \widehat{\mathbf{e}}_{2} \widehat{\mathbf{e}}_{2}^{T} \\
& =\left(\lambda_{1}-\lambda_{2}\right) \widehat{\mathbf{e}}_{1} \widehat{\mathbf{e}}_{1}^{T}+\lambda_{2}\left(\widehat{\mathbf{e}}_{1} \widehat{\mathbf{e}}_{1}^{T}+\widehat{\mathbf{e}}_{2} \widehat{\mathbf{e}}_{2}^{T}\right) \\
& =\left(\lambda_{1}-\lambda_{2}\right) \widehat{\mathbf{e}}_{1} \widehat{\mathbf{e}}_{1}^{T}+\lambda_{2} \mathbf{I}
\end{aligned}
$$

Double angle representation

- With this result at hand:

$$
\begin{aligned}
\mathbf{z} & =\binom{T_{11}-T_{22}}{2 T_{12}} \\
& =\left(\lambda_{1}-\lambda_{2}\right)\binom{\cos ^{2} \alpha-\sin ^{2} \alpha}{2 \cos \alpha \sin \alpha} \\
& =\left(\lambda_{1}-\lambda_{2}\right)\binom{\cos 2 \alpha}{\sin 2 \alpha}
\end{aligned}
$$

Remember:

$\lambda_{1} \geq \lambda_{2}$

z cannot distinguish between iOD and i2D

- \mathbf{z} is a double angle representation of the local orientation

Color coding of the double angle representation

Example

trace of T
determinant of T

Example

C_{1}

C_{2}

33

Example

λ_{1}
λ_{2}

Example

Double angle descriptor

Rank measures

- The rank of a matrix (linear map) is defined as the dimension of its range
- We can think of c_{1} and c_{2} as (continuous) rank measures, since
-i1D signal $\Rightarrow \mathrm{T}$ has rank $1 \Rightarrow$ $c_{1}=1$ and $c_{2}=0$.
- Isotropic signal $\Rightarrow \mathbf{T}$ has rank $2 \Rightarrow$ $c_{1}=0$ and $c_{2}=1$.

Harris measure

- The Harris-Stephens detector is based on c_{H}, defined as

$$
\begin{array}{rlr}
c_{H} & =\operatorname{det} \mathbf{T}-\kappa(\operatorname{trace} \mathbf{T})^{2}, & \kappa \approx 0.05 \\
& =\lambda_{1} \lambda_{2}-\kappa\left(\lambda_{1}+\lambda_{2}\right)^{2} & \begin{array}{l}
\text { Different va } \\
\text { have been } \\
\text { in the litera }
\end{array} \\
& \lambda_{2} \uparrow \quad c_{\mathrm{H}}>0 &
\end{array}
$$

Harris measure

- By detecting points of local maxima in c_{H}, where $c_{H}>\tau$, we assure that the eigenvalues of \mathbf{T} at such a point lie in the colored region below
$\lambda_{2} / / \lambda_{1}$

Example

