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Abstract
With depth sensors becoming more and more common, and applications with varying viewpoints (e.g. virtual
reality) becoming more and more popular, there is a growing demand for real-time depth-image-based-rendering
algorithms that reach a high quality.
Starting from a quality-wise top performing depth-image-based-renderer, we develop a real-time version. Despite
reaching a high quality as well, the new OpenGL-based renderer decreases runtime by (at least) 2 magnitudes.
This was made possible by discovering similarities between forward-warping and mesh-based rendering, which
enable us to remove the common parallelization bottleneck of competing memory access, and facilitated by the
implementation of accurate yet fast algorithms for the different parts of the rendering pipeline.
We evaluated the proposed renderer using a publicly available dataset with ground-truth depth and camera data,
that contains both rapid camera movements and rotations as well as complex scenes and is therefore challenging
to project accurately.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms

1. Introduction

Depth-sensors become more and more common, and are in-
tegrated in more and more devices, e.g. Microsoft Kinect,
Google Tango, Intel RealSense Smartphone, and HTC
ONE M8. This enables new applications such as virtual
reality, 360 degree video, frame interpolation in render-
ing [MMB97], rendering of multi-view plus depth (MVD)
content for free viewpoint and 3D display [TLLG09]
[Feh04], all using depth-image-based-rendering (DIBR).
DIBR has been explored before (e.g. [PG10] and [YHL16]),
albeit using different algorithms and different test-sequences
than in this work. Here, we start with and benchmark against
a renderer that was highly optimized for quality, and use the
Sintel [BWSB12] datasets, which provide ground-truth val-
ues for depth and camera parameters (thus ensuring that all
errors are introduced by the projection itself), as well as se-
quences with complex scenes and camera movement, which
are challenging to project accurately.
In an earlier paper [OF17], we examined different forward-
warping methods to develop a renderer maximizing quality.
This was done by creating a flexible frame-work incorporat-
ing state-of-the-art methods as well as own novel ideas, and
running an exhaustive semi-supervised automatic parame-

ter search to estimate the optimal parameter and methods.
Our final algorithm is using a forward warp technique called
splatting [Sze11], a popular choice since this leads to a high
preservation of details. However, its great disadvantage is its
high computational complexity, which is even made worse
by the fact that it is nontrivial to parallelize.
In this paper, we develop a real-time version of our renderer,
while minimizing quality loss. This was enabled by discov-
ering and exploiting similarities between forward warping
and mesh-based projection, as well as implementing effi-
cient, accurate algorithms for the different rendering steps.
The rest of the paper is organized as follows: section 2 intro-
duces the original renderer as well as an optimized CPU ver-
sion. Section 3 discusses the similarities between forward-
warping and mesh-based projection as well as the different
stages of the OpenGL rendering pipeline. Section 4 presents
an evaluation and section 5 concludes the paper.

2. Quality optimized forward warping

In the following, we will only describe the methods which
proved to be most beneficial. For a complete comparison of
the different methods the reader is referred to our original
paper [OF17].
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Figure 1: Example projection (taken from the alley2 sequence):
Top row: input image (left), mask image as used for quality measurement (right)
2nd row: projection using the CPU versions (from frame 1 to frame 25 of the sequence), original (left) and optimized (right)
3rd row: projection using the OpenGL version (from frame 1 to frame 25 of the sequence) (left), and ground-truth frame 25 of
the sequence (right)

In forward warping, the points of the input frame are splatted
across a neighborhood in the target frame. We call the result-
ing points candidate points. In many cases, several candidate
points compete for the same pixel in the target frame. These
are merged using agglomerative clustering [MLS14, SV14]:
two candidate points will be merged if their distance in both
depth and color is small enough, using initial weights based
on the distance of the projected candidate point to the cen-
ter of the pixel that is currently colored. The weights are
summed up, to give candidates with a higher number of
original points a higher weight in consecutive mergings. If
another candidate point is added to the same cluster, the
summed-up weight means that the same result is received
as if a weighted average of all points of the cluster would
have been calculated, using the initial weights. In every step,
only the two points/clusters are merged that are closest to
each other, and the process is stopped when this minimal
distance is higher than a predetermined threshold. Then, the
point/cluster is selected which is nearest to the camera; the
accumulated weights are considered in the decision as well.

To counter artifacts we discovered during our work, we in-
troduced two extensions:

1. Edge suppression: which removes anti-aliased pixels at
the edge of objects, which otherwise lead to visible lines
in the output frame.

2. Scale adaptive kernels: we adapt the kernel size of the
splatting algorithm taking local scale change into ac-
count, using a similar method as described in section 3.1.

Also, we use an internal upscale during the splatting process,
of 3 in both width and length, and a Gaussian filter with over-
lapping neighborhoods for the downscale, see also 3.3.
Since we did an exhaustive evaluation of different methods
and parameters we are confident that the final set-up lead
to overall best quality results, and thus we use the same in
all following implementations (if not stated otherwise) and
concentrate on reducing the runtime.

2.1. CPU-optimized version

The disadvantage of the derived projection algorithm is its
high computational complexity. To reduce it, we heavily
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optimized the code. Among other things, this included the
change of all parameters to nearby values that were a power
of two, as well as replacing exponential functions by func-
tions of the form (1− ( d

ks
)2)n, where ks is the kernel size,

d the distance (e.g. to the center of the kernel), and n an in-
teger chosen to match the original function, and which lead
to an exponent that can easily be replaced by a few multipli-
cations. This was done e.g. for the weight calculation of the
agglomerative clustering algorithm, and is demonstrated in
figure 2. Also, saving the candidate points to an intermediate
data structure and merging them according to agglomerative
clustering is done in the same step. This simplified the com-
putation, but leads to slightly different results, since in some
cases different points are merged, or even not merged at all.
While the optimized version reached a high speed-up, it is
not high enough for real-time applications. Thus, we devel-
oped a OpenGL-based version.

0

1

1

Figure 2: Replacing one function with a similar, less com-

putational complex one: e−0.8∗( d
ks
)2

(blue), (1−( d
ks
)2)6(red).

The x-axis shows the normalized distance d
ks

. These are the
functions used in the agglomerative clustering steps: the one
presented in blue is used in the original renderer, the one
presented in red otherwise.

3. From forward-warping to mesh-based projection

Forward-warping is extremely difficult to implement effi-
ciently on a GPU, since it requires parallel writing to and
modifying the same memory address. However, we noticed
how forward warping using agglomerative clustering can be
emulated by mesh-based projection:
The main reason for the high quality of forward warping lies
is that several candidate points are taken into account when
coloring a pixel. As discovered earlier, agglomerative clus-
tering leads to the highest quality in forward warping, and
the idea behind agglomerative clustering is to cluster can-
didate points together which are likely to lie in the same

neighborhood of the same object. Thus, in the ideal case dif-
ferent clusters are derived, where each one belongs to one
specific neighborhood on one specific object, and the most
likely cluster is selected for the pixel in question.
Instead, a mesh-based renderer can read this neighborhood
from the input texture, and calculate the final color using a
Gaussian filter on this neighborhood. This filter emulates the
agglomerative clustering merging process, by calculating the
weights in a similar way, however only taking the distances
to the center of the kernel into account. For a calculation of
the color distance we would first need to determine which
color the pixel is most likely to have, which is difficult to
achieve accurately in a limited computation time, and there-
fore omitted here. Care has however to be taken that all tex-
ture values belong to the same object.
Also, both the scale-adaptive kernel and edge suppression
are included naturally, the latter because points on the border
between objects will not be connected by the meshing algo-
rithm, and thus the anti-aliased color will spread in a much
more limited area. However, this will also lead to more holes
(as can be seen in figure 1), even if the downsampling does
cancel this out to a certain degree, since only one pixel needs
to be set in the neighborhood used for coloring a pixel. The
rest of the missing data can be easily filled in using a simple
hole-filling algorithm, e.g. hierarchical hole-filling [SR10].
In the following, we take a closer look at the different
pipeline stages of the OpenGL version.

3.1. Meshing

Creating high quality objects and meshes from 3D depth
maps has extracted a lot of attention from the research com-
munity in recent years, an example is of course [NIH∗11].
However, most approaches use several depth maps for the
mesh (an exception is e.g. [KPL05]), and concentrate on sin-
gle objects rather than whole scenes. Here, we are interested
in constructing one or several mesh(es) for the whole scene
including several objects (e.g. the girl and the house in fig-
ure 1) whose number and positions are unknown from a sin-
gle depth map, to allow for real-time rendering with a low
latency. Also, in our application the scene may contain mov-
ing objects (see even the girl in figure 1), which is something
that still has to be explored using depth map-fusion tech-
niques. On the other hand, we only calculate the connections
of the mesh rather than also refining the vertex-positions (as
is often done in meshing algorithms), and assume that this
is handled by an earlier depth map refining step, such as
e.g. [WLC15]. Also, for reasons of computational complex-
ity, we assume that a point may only be connected to points
it is directly neighboring in the depth map. Thus, whenever
the term neighborhood is used in the following, it is refering
to 3x3 neighborhoods in the depth map.
The trade-off necessary in most meshing methods is trying
to connect as many points belonging to the same object as
possible, while creating as few connections between differ-
ent objects as possible, which is demonstrated in figure 3. We
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Figure 3: Wrongly connected mesh (left): connections over object boundaries (causes stripes) and missing connections (causes
black spots). Our meshing algorithm was able to remove most of these artifacts (right).(detail from the temple2 sequence)

found that the following algorithm worked very well, while
being comparably inexpensive to compute:
We start by creating the input vertexes for the mesh: for ev-
ery value in the input depth map one point is projected to
3D-space, using the position in the depth map, the depth-
value as well as the camera parameters of the input frame.
In the next step, we determine which points should be
connected to which of its neighbors. We use a spheroid-
approximation for that, to allow for different geomet-
ric changes in perpendicular directions. To estimate the
spheroid, we calculate the difference vectors from the central
point to each of its 8 nearest neighbors in the depth map, us-
ing the projected 3D positions. We select the difference vec-
tor with the smallest length (i.e. the one originating from the
nearest neighbor of the central point), and calculate which
of the remaining difference vectors are the most perpendicu-
lar to this difference vector, and select the two most perpen-
dicular, taking care that they point in (approximately) op-
posite directions. We again select the one of these two with
the smallest length. The length of this difference vector, and
the length of the difference vector we selected first, are then
used as the radii of the spheroid. Rather than estimating a
spheroid directly, we calculate the absolute value of the dot
product of each of the remaining difference vectors to the
ones selected as representing the radii, and use the results
as blending weights for the respective radii to derive a lo-
cal radii, one for each of the remaining difference vectors.
This local radius is then multiplied by a predetermined fac-
tor (2.425 was selected based on experimental results). If the
resulting local radii is greater than the length of the corre-
sponding difference vector, the neighbor used for the calcu-
lation of this difference vector is considered to be connected.
Two exceptions were made in this method: 1. if one of the
two radii is smaller than a predetermined factor (0.1 was se-
lected based on experimental results) it will be set to this
factor, and 2. if the radii of a neighbor is greater than the
maximal depth-range found in the depth map, divided by a
predetermined factor (81.25 proved to lead to good results),
it will not be connected. These two selections both maximize
the number of correct connections and minimize the number
of false connections, see also figure 3. We save the distances

of each neighbor, divided by the local radii, where the sign
determines whether or not the neighbor should be connected.
From the connections, edges are calculated in the next step.
An edge is created if both points have positive connections.
The absolute value of both connections is added up and
saved; an edge is indicated by saving it as a positive value,
otherwise it is saved as a negative value.
Finally, the edges are used to create the triangles used for the
mesh-based rendering. For this, always 4 directly neighbor-
ing points are considered. If they are connected on at least
3 of the 4 horizontal and vertical edges, and at least one of
the diagonal edges, two triangles are created connecting the
two points. Out of the possible two connections, we select
the one using the diagonal with the lowest (absolute) edge
value. If the 4 points are only connected in one horizontal
and one vertical edge, one triangle will be created if the cor-
responding diagonal edge is positive as well.

3.2. Agglomerative Clustering

We do the agglomerative clustering emulation in a two step
approach: during the actual point projection we save the tex-
ture coordinates rather than a color. In the second step, we
use the distance between the texture coordinates of the cen-
ter pixel to the texture coordinates of its 8 neighbors (mul-
tiplied by the width respectively the height of the texture)
to determine the scale in x- and y-direction. The respective
smallest distances are used, limited to a maximal value of
2.5. The kernel size for the Gaussian filter is then deter-
mined in the following way: if any of the two coordinates
is equal or smaller than 0.5, only the two nearest pixels will
be used for this direction. If it is greater than 0.5 but smaller
or equal to 1.5, the kernel size will be set to 3 in this direc-
tion, if it is greater it will be set to 5. Higher kernel sizes did
not lead to significant increase in quality, but lead to a high
increase in the runtime, in all likelihood due to the much
higher demand of memory and the higher amount of mem-
ory accesses. Then, we calculate the final color by running a
kernel over this neighborhood. The weights for each color is
calculated using the function presented in red in figure 2, and
the distance in x- and y-direction are normalized by the scale
in this direction. If the distance is larger than the scale in
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Figure 4: Example of anti-aliasing techniques. From left to right: without anti-aliasing, 2x2 upscale using 2x2 neighborhood
averages for the downscale, 2x2 upscale using 3x3 Gaussian kernels for the downscale, 4x4 upscale using 4x4 neighborhood
averages for the downscale; the top row is showing the complete images, the other rows zoomed-in details

one direction, the color-value is discarded. Also, we use the
edges calculated earlier to discard color-values belonging to
points not connected to the pixel we are currently coloring.

3.3. Downsampling

As in the CPU versions, an internal image upscaled by 3
in both width and height was used, as well as a Gaussian
5x5 kernel for downsampling. This proved to be best during
our parameter estimation of the projection framework. How-
ever, instead of calculating the weights using an exponential
function as used in the original CPU approach, we use pre-
determined power-of-2 weights for decreased computational
complexity (as used in the CPU optimized version as well).
We demonstrate the differences of different downsampling
methods in figure 4, with the example application of full
screen anti-aliasing FSAA. Anti-aliasing is a related applica-
tion, where the internal upscale is applied for similar reasons
as in our DIBR approach. We chose this example to empha-
size differences, an thus make them more visible. In figure 4,
a Gaussian kernel with overlapping neighborhoods is com-
pared to using averages of a non-overlapping neighborhood,
which is the most popular choice for FSAA due to its simple

implementation. The overlapping neighborhoods introduces
a slight blur, but overall leads to results with a similar visual
quality as averaging methods with higher internal resolution,
and which also uses more memory accesses (16 vs 9 com-
paring the 4x4 averaging downsample with the 3x3 Gaussian
kernel) when calculating the final color in the output image.
Here, the downscale has the additional advantage of filling
pixels that will not be written to otherwise, since only one
pixel in the neighborhood of the upscaled image needs to be
set to set a pixel in the output image.

4. Evaluation

For evaluation, we compare projected images to ground-
truth images to accurately measure the projection perfor-
mance of the different DIBR methods. We use the Sintel test-
sequences [BWSB12] for that. These provide both ground-
truth depth and camera poses. Access to ground-truth data is
crucial to ensure that all noise and artifacts are introduced by
the projection algorithms rather than by inaccurate or noisy
input data. The sequences we selected were sleeping2, al-
ley2, temple2, bamboo1 as well as mountain1 (see figure 5).
We choose these sequences since they contain moderate to
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sleeping2 alley2 temple2 bamboo1 mountain1

Figure 5: Selected Sintel sequences.

high camera motion, but only few moving objects, which are
currently not handled by our projection. Note that some of
the sequences contain highly complex scenes and are there-
fore difficult to project accurately. The size of the textures
and depth maps used were 1024x432.
All sequences are provided with two different texture sets:
clean as well as final, where the final sequences include more
accurate lighting and effects such as blur, which are omit-
ted in the clean sequences. We selected the clean sequences
since the difference between different projection algorithms
is more pronounced there due to a higher level of detail,
which is lessened by the effects added to the final sequences.
For each projection algorithm and sequence, we projected
from the first and the last frame of each sequence to all
other frames of the sequence, then measured the differences
between the projected and the ground-truth frame in both
PSNR and multi-scale SSIM [WSB03]. The results are pre-
sented in figure 7. To reach a high accuracy, we removed
pixels that are occluded in the input frames as well as those
containing moving objects from the measurements. This was
done by using mask images, which were created beforehand.
All points were projected from the input frames to each of
the respective target frames. The calculaded position was
rounded up and down in both the x- and y-coordinate, and
the resulting 2×2 regions were set in the mask. Before that,
the depth of the projected point was compared to the depth
found in the depth map of the target frame for each of the 4
pixels, and only the pixels were set where the difference be-
tween the two depth-values is comparably small, to remove
moving objects from the measurements. An example mask is
given in figure 1, where also example images are presented
from the different projection methods.
The CPU used was an Intel Xeon E5-1607 running at 3 Ghz
with 8 Gbyte of memory, and the GPU used was a GeForce
GTX 770 with 2 Gbyte of memory. Timing results are given
in table 1. The reason why the original CPU-based renderer
performs so poorly in some sequence is due to the adap-
tive kernel sizes. Changes in local scale (due to camera-
movement or rotation) lead to large splatting kernels and
thus to an inflation of candidate points that need to be consid-
ered. In the OpenGL version, the meshing step (as described
in 3.1) takes up most of the time, up to 70%, followed by
the rendering and the agglomerative clustering (as described
in 3.2) with ca. 20% of the time. If the same depth map is to
be reused, the meshing step might be omitted in consecutive
frames, thus reducing the runtime drastically.
The differences in the results between the CPU versions lie

mainly in the different merging process (see also 2.1).

Sequence Projected CPU, CPU, OpenGL
from original optimized

Sleeping 2
1 3559 999 10.9
49 2516 1081 10.5

Alley 2
1 2248 918 10.0
49 1713 789 9.6

Temple 2
1 24724 1009 9.7
49 5492 898 10.4

Bamboo 1
1 4079 949 11.2
49 5852 1051 11.3

Mountain 1
1 34963 951 10.0
49 4166 1113 10.5

average 8931 976 10.4

Table 1: Timing results in ms. Average results are given for
the projection to each frame of the sequence from frame 1
and frame 49 respectively.

As suspected, the OpenGL-version leads to a lesser qual-
ity in most sequences, in some cases however it performed
better. The reason for this lies in the difference how the pro-
jection works. Mesh-based projection uses triangles, which
can take a nearly arbitrary form in the target frame, e.g. a line
segment not aligned with any of the image axes. The forward
warping however always projects to a rectangle. If this rect-
angle contains the whole aforementioned line-segment, the
connected points will project to a multitude of pixels in the
target frame they are not supposed to project to, which will
be punished in our paramater estimation algorithm. There-
fore the two points will be connected in the mesh-based pro-
jection, but not in the forward warping. This leads to arti-
facts were background-objects can shine through foreground
objects whose points are not connected, as demonstrated in
figure 6. On the other hand, in some cases the agglomera-
tive clustering of the CPU version might use a cluster which
is not the one nearest to the camera, but has a higher num-
ber of contributing candidate points. This is not realized in
our mesh-based projection approach, and would require a
modification of the OpenGL pipeline, which in all likelihood
would increase the runtime. However, this is probably also
one of the main reasons why the CPU versions reach a higher
measured quality in most sequences.
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Figure 6: Artifacts due to missing connectivity (detail from the temple2 sequence):
CPU version (left) with background objects shining through foreground; OpenGL version (middle): no artifacts, the partly
missing foreground objects are due to occlusion in the input frame; ground-truth image (right)
This is a particular difficult projection, where the camera was rotated by nearly 90 degrees between input and output frame

5. Conclusions

We developed a real-time method for DIBR, based on a com-
putationally complex, but quality-maximized renderer. This
was done by exploiting similarities between forward warp-
ing and mesh-based projection. Despite sharing these sim-
ilarities, in practice they show different behavior, meaning
that it might be possible to optimize the real-time renderer
further, in quality as well as in runtime. Furthermore, in real-
world applications depth map and camera parameters will
contain noise and inaccuracies, whose effects on the projec-
tion still have to be determined.
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Figure 7: Measured PSNR (a), left) and MS SSIM (b), right) between the projected images and the original images of the
sequences:
From top to bottom: alley, bamboo, mountain, sleeping and temple. Both projections from frame 1 (continuous lines) and from
frame 49 (dashed lines) are shown, for each of the different DIBR methods.
Note that the curves are ordered according to their performance in the legend, the curves with the highest values are mentioned
first.
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