Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

Martin Danelljan

Andreas Robinson

Fahad Khan

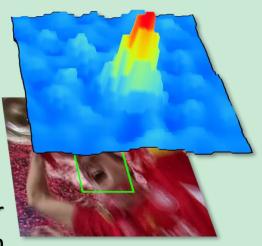
Computer Vision Laboratory, Linköping University, Sweden

Introduction

Discriminative Correlation Filters (DCF):

feature map

Learns a set of discrete filters for target localization



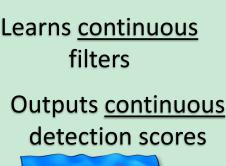
Outputs discrete detection scores

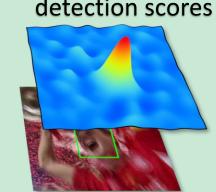
Our Approach:

Posing the learning problem in the continuous spatial

domain Multi-







Advantages

- Integration of <u>multi-resolution</u> (deep) features
- Accurate sub-pixel (or sub-grid) localization
- Sub-pixel supervision in the learning
- Efficient processing of all available information
- Avoids artefacts caused by explicit resampling

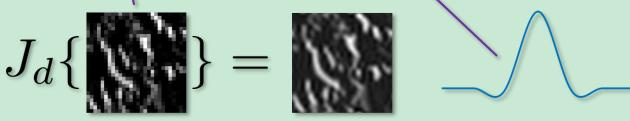
Applications

1) Object tracking 2) Feature point tracking

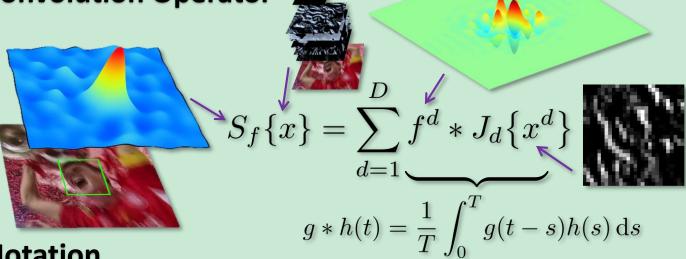
Continuous Convolution Operators

Interpolation Operator $J_d: \mathbb{R}^{N_d} o L^2(T)$

$$J_d\{x^d\}(t) = \sum_{n=0}^{N_d-1} x^d[n]b_d\left(t - \frac{T}{N_d}n\right)$$



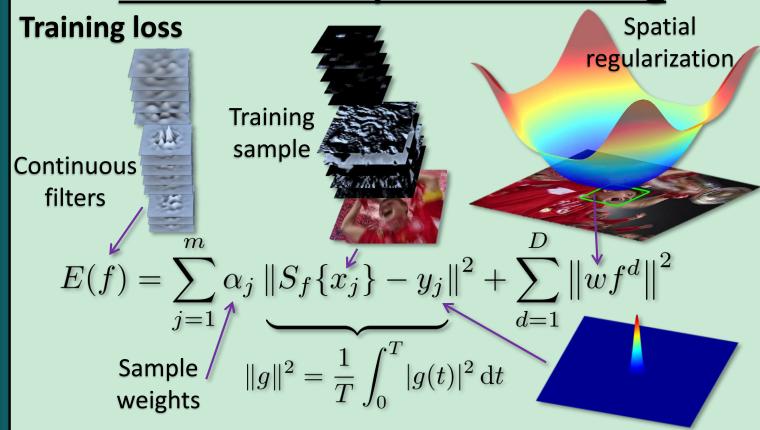
Convolution Operator



Notation

- $\hat{g}[k]$ Fourier coefficients of $g \in L^2(T)$
- discrete Fourier transform of $|x_i^d \in \mathbb{R}^{N_d}|$ $X_i^d[k]$

Convolution Operator Learning



Fourier Domain

Desired continuous output scores (labels)

$$E(f) = \sum_{j=1}^{m} \alpha_j \left\| \sum_{d=1}^{D} \hat{f}^d X_j^d \hat{b}_d - \hat{y}_j \right\|_{\ell^2}^2 + \sum_{d=1}^{D} \left\| \hat{w} * \hat{f}^d \right\|_{\ell^2}^2$$

Assumption: finitely many non-zero Fourier coefficients. Gives normal equations: $(A^{\mathrm{H}}\Gamma A + W^{\mathrm{H}}W) \hat{\mathbf{f}} = A^{\mathrm{H}}\Gamma \hat{\mathbf{y}}$

Object Tracking Framework

- Features: VGG network (pre-trained on ImageNet)
- Optimization: Conjugate Gradient

Feature Point Tracking Framework

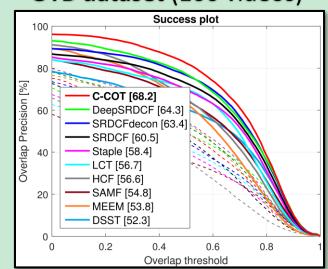
Uniform Grayscale $\hat{f}[k] = \frac{\sum_{j=1}^{m} \alpha_j X_j[k] \hat{b}[k] \hat{y}_j[k]}{\sum_{j=1}^{m} \alpha_j \big| X_j[k] \hat{b}[k] \big|^2 + \beta^2} \overset{\text{regularization}}{\swarrow} w(t) = \beta$ pixel features D=1

Experiments

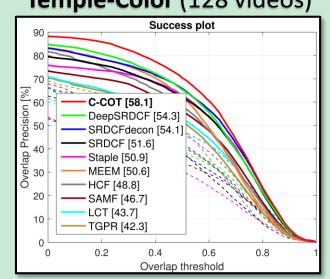
Object Tracking: Layer fusion on OTB (100 videos)

	Layer 0	Layer 1	Layer 5	Layers 0, 1	Layers 0, 5	Layers 1, 5	Layers 0, 1, 5
Mean OP	58.8	78.0	60.0	77.8	70.7	81.8	82.4
AUC	49.9	65.8	51.1	65.7	59.0	67.8	68.2

OTB dataset (100 videos)



Temple-Color (128 videos) Success plot



VOT2016 challenge results (top 3) [Matej et al., VOT workshop 2016]

Tracker	EAO	A	${ m R}$	A_{rank}	R_{rank}	AO	EFO	Impl.
1. O C-COT	0.331	0.539	0.238	12.000	1.000	0.469	0.507	D M
$2. \times \text{TCNN}$	0.325	0.554	0.268	4.000	2.000	0.485	1.049	S M
3. * SSAT	0.321	0.577	0.291	1.000	3.000	0.515	0.475	S M

Feature Point Tracking: The Sintel dataset

