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In this supplementary material of [6] we provide additional derivations and
implementation details. Section 1 provides details about the derivation of eq. (5)
in the paper. Section 2 contains detailed derivations of the Fourier coefficients of
the desired convolution output y; and the interpolation functions b4, described
in section 3.4 in the paper. Details about the numerical optimization is given
in section 3. We provide detailed results on the OTB-2015 and Temple-Color
datasets in sections 4 and 5 respectively. In our object tracking experiments, we
use the same parameter settings for our method in all state-of-the-art compar-
isons (sections 5.2, 5.3 and 5.4), i.e. for all datasets and videos. Further, we use
the same parameter settings for all feature point tracking experiments. Code,
raw result files and a video of qualitative feature point tracking results on the
MPI Sintel dataset are available at the project webpage http://www.cvl.isy.
liu.se/research/objrec/visualtracking/conttrack/index.html.

1 Fourier Coefficients of the Interpolated Feature Map

We first derive the expression for the Fourier coefficients of the interpolated
feature map Jy{x%}, which is used to prove eq. (5) in the paper. The interpolation
operator J; : RN¢ — L2(T) for feature channel d is defined as (same as eq. (2)
in the paper),

Ng—1 T
Ja{z®y(t) = nZ::O z%n]bg (t - Ndn) . (1)
Here, by € L?(T) is the interpolation function for channel d. From the shift prop-

erty [21], it follows that by (t — Nldn) has Fourier coefficients exp (— zi,—’lk;) ba[k].
By utilizing linearity, the Fourier coefficients of (1) are then derived as,

Tk = 3 atfnle R = k] 3 aflnle FE = by X. ()

Here, X[k] := SNt xd[n]e_’%"k, k € Z is the periodically extended discrete
Fourier transform (DFT) of x¢. The Fourier coefficients of the confidence output
(eq. (5) in the paper) are then derived from (2) here and eq. (1) in the paper
by exploiting linearity and the first convolution property [21] (see section 3.1 in
the paper) of the Fourier coefficients.
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2 Fourier Coefficients of y; and by

We construct the desired convolution output y; and interpolation function bg
as periodic repetitions of functions defined on the real line. For an integrable
function g € L*(R), we define the T-periodic repetition (or periodic summation)
as gr(t) = Y., . g(t —nT). The Fourier coefficients gr[k] of gr can then be
obtained by evaluating the Fourier transform g(¢) = [~ _g(t)e=""¢tdt of g at
discrete locations using Poisson summation formula [21],

. 1.7k
artil = 79 (7 - 3
In the proposed learning framework, y; € L2(T) is the desired output of
S¢{x;}, i.e. the convolution operator applied to the sample z;. Thus, in our
formulation, the training sample z; is labeled by an entire confidence function
(or heat-map) y; of the target presence at all continuous locations. The function
value y;(t) represents the labeled confidence score at the location ¢ € [0,T).
As y; € L*(T) is arbitrary, it can be tailored for the specific application. For
the visual tracking, a suitable approach is to construct y; based on a Gaussian
function. We let y;(t) = .02 z;j(t — nT) be the periodic repetition of the
Gaussian function,

2j(t) = e =) (4)

Here, u; € [0,T) is the estimated location of the target (or feature point) in the
corresponding sample z; and o is a parameter. The Fourier transform of (4) is
derived as 2;(§) = V2mo? exp (—i27u;€) exp ( — 202 (m€)? ) using the transform
pair of a Gaussian function and the shift property (see e.g. [21]). The Fourier
coefficients are thus computed using (3) as,

5[k = %@« (;) = \/2;76)@ (202 <7er>2 - zzT”u]k> : (5)

The interpolation functions by, used in the interpolation operator (1), are
constructed using the standard cubic spline kernel [24],

(a+ 2P —(a+3)t2+1 |t <1

b(t) = 4 alt|® — 5at? + Salt| — 4a 1< <2. (6)
0 t| > 2
In our experiments, we use the value a = —0.75 for the shape parameter. The

interpolation function for channel d is obtained by first rescaling b to the sample
interval T/Ng4. It is then shifted half an interval T/(2N4) to align the origin
of the continuous coordinate system with the sampling intervals of the feature
map. The resulting interpolation kernel ¢4 and its Fourier transform are given

Y5
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Here, ¢, is obtained through the shift and scaling property of the Fourier trans-
form. The analytical expression for the Fourier transform of (6) is given by,

- 6(1 — cos2m€) + 3a(l — cos4n€) — (6 4 8a)w¢ sin 27& — 2awé sin 47w¢
be) = L .

(8)

The Fourier coefficients of bq(t) = >.™  cq(t —nT) are obtained through (3) as,
N 1 k 1 7r ~(k
k = —¢ — = — —f— e .
balk] = 7 <T> N, eXp( ZNf) b (Nd> )

3 Conjugate Gradient Optimization

For the target tracking application we employ the Conjugate Gradient (CG)
method [20] to iteratively optimize the filter coefficients f by solving the normal
equations (e.q. (8) in the paper),

(A"TA+WHW) = ATy . (10)

Here, the matrix A originates from the data term of the loss (e.q. (7) in the
paper) and consists of one diagonal block per feature dimension d and training
sample j. The diagonal matrix I" contains the sample weights ;. The matrix
W corresponds to a multi-channel convolution operation, where each channel d
is convolved with the Fourier coefficients w of the penalty function. The vector
¥ is the concatenation of the Fourier coefficients of all label functions y; (see
section 3.3 in the paper for more details).

We perform 100 CG-iterations in the first frame to converge to a good initial
estimate of the filter f. In the subsequent frames, we use 5 iterations per frame
and initialize CG with the current filter (as computed in the previous frame). To
further speed up the convergence, we initialize the previous search direction in
CG to a forgetting factor times the final conjugate direction used in the previous
frame. This forgetting factor is set to (1—\)'°, where ) is the learning rate of the
tracker. The CG method is commonly used with a preconditioner to improve the
condition number of the matrix and thereby the convergence rate of the solver.
We employ an approximate diagonal preconditioner, which is computed as an
efficient weighted running average of the training samples.

Our Conjugate Gradient optimization has a number of advantages compared
to the Gauss-Seidel approach used in [3,4] regarding complexity and implemen-
tation. First, CG does not require explicit evaluations of the matrix product
AHTA. We therefore obtain a linear O(D) instead of quadratic O(D?) com-
plexity of the computations and memory consumption in the number of feature
channels D. This is important for high-dimensional deep feature maps, as em-
ployed in this work. Secondly, CG can utilize the specific sparsity structure of
the problem (10). We exploit that A can be permuted to a block-diagonal struc-
ture, containing one (dense) block matrix per Fourier coefficient k = — K, ... K.
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The operations v — Av and v — AHv in CG is implemented solely using dense
block-wise matrix-vector multiplications. We also use the fact that the matrices
W and WH correspond to convolution operations over all feature channels with
the kernel 1 and its Hermitian adjoint respectively. The operation v — WHWv
in CG is performed as convolutions and thus W is not constructed explicitly.
Since the Fourier coefficients of a real function obey the Hermitian symmetry,
we only need to process half the Fourier coefficients 0 < & < K. This effectively
halves the computations and memory consumption of the training procedure.
Finally, as the required operations in (10) are implemented as either block-wise
dense matrix-vector multiplications, ordinary convolutions or element wise mul-
tiplications, our framework does not require explicit handling of sparse matrices
(using e.g. sparse matrix libraries), which simplifies implementation.

4 Detailed Results on OTB-2015

In this supplementary material, detailed results on OTB-2015 [25] with 100
videos are provided. Videos and ground truth are available at https://sites.
google.com/site/benchmarkpami/. Figure 1 contains the success plots for all
11 attributes and Table 2 shows the per-video overlap precision for all trackers
in the comparison.

5 Detailed Results on Temple-Color

We also present detailed results on the Temple-Color dataset [17] with 128
videos. Videos and ground truth are available at http://www.dabi.temple.
edu/~hbling/data/TColor-128/TColor-128.html. The per-video overlap pre-
cision for all trackers in our comparison are reported in table 2.
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Fig. 1. Success plots on OTB-2015 [25] dataset. The overall success plot (top-left) is
computed over the entire dataset (same as in figure 2a in the paper). We also show the
success plots for all 11 attributes. The title of each attribute plot contains the name of
the attribute and the number of videos associated with it. The area-under-the-curve
(AUCQC) score is shown in the legend. For clarity, we only display the top 10 trackers in
the legend. Our object tracking framework achieves the best results on all 11 attributes.
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Table 1. A per-video comparison on the OTB-2015 dataset [25] with 100 videos. The
results are shown in terms of overlap precision (OP) (in percent), which corresponds
to the PASCAL criterion. The best and second best results for each video are shown
in red and blue font respectively. Our object tracking framework achieves a significant
gain of 5.1% in mean OP, compared to the second best tracker (DeepSRDCF).

Video EDFT|LSHT|DFT|ASLA| TLD[Struck| CFLB|ACT| TGPR|KCF|DSST[SAMF|DAT|[MEEM|LCT|HCF[Staple|SRDCF[SRDCFdecon|DeepSRDCF|C-COT]|
B |1 (s g 0ol g | ) | ] 0oy [el) 2] (o) 1] Lol 0o ]0s) [ I 1 1 1
Basketball 31 [ 455 [71.6] 652 [31.3] 11 [ 9.1 [48.7] 913 [598] 698 | 96.7 [89.5] 83 [99.2]99.9] 872 | 412 30.1 283
Biker 26.7 | 8.80 | 26.7 | 46.7 | 32.6 | 26.7 | 48.1 [26.7 | 87.4 [26.7] 25.1 | 310 [44A| 267 [45.0|25.0] 26.7 | 5.0 6.7 510
Birdl 26.7 | 441 [26.2] 245 [0.49 | 15.4 | 0.98 [2.45 62 | 561 [50.1] 441 [31.1[100] 27.7 | 6.7 561 262
[Bird2 919 [ 85.9 | 71.7] 50.5 [42.4] 525 99 | 85.9 [46.5] 475 95 | 99| 99 [778] 99| 96 | 545 515 818
BlurBody 107 [ 26 [114] 15 | 44 | 988 53.9] 985 |58.7] 62.3 | 958 [37.1| 988 [99.4[99.1] 99.7| 100 100 100
BlurCarl 148 | 121 [7.68] 229 | 136 99.9 69.9] 945 [100] 958 | 100 | 1.48] 100 [100]99.7] 695 | 99.9 99.9 99.9
BlurCarZ 735 | 200 |17.4] 12.3 |84.5] 938 17| 938 [94.7] 100 | 99.8 [48.7| 947 [100 [94.7| 100 | 100 100 100
BlurCars 56 | 308 [118] 12 036 100 | 100 [100] 98.0 | 100 100 100
[BlurCard 96.8 | 33.7 | 100 100 [100100{ 100 | 100 100 100
BlurFace 241|115 20 [ 15 [100 100 [ 100100 99.8 | 100 100 100
BlurOwl 428 [ 9.83 [108] 114 | 63.9 99 [89.4]96.5] 50.6 | 956 971 100
Board 194 [ 865 [19.9] 509 [ 14.1 825 |85.4|947] 778 | 85.7 95.7 9.6
Bolt T T T3 [i% 85 [080] 08 [ 09.7| 143 E] 716
Boli2 0683 | 52.9 [0.653] 0.653 [0.653 0.683 [0.683 55.4] 91.1 | 1.02 T02 853
Box 16.4 572 [616 835 [8.96(33.7] 415 | 415 96 397
Boy 135 992 [100] 99 | 100 | 100 99.7 99.5
Carl 816 | 38.7 539 [208]5.39] 765 | 100 100 100
Carz 100 | 100 100 [ 100 100 | 100 100 100
Caral 100 | 99 853 (173 173 | 100 100 100
Card 100 95.9]39.6] 100 | 100 100 100
CarDark 100 99.2[88.3] 100 | 100 100 100
[CarScale 7 79 [444] 100 | 841 55.3 ST
ClifBar 37T 703 417] 580 | 41 55 501
Coke i1 OTA (914 77 | 636 650 505
Couple 221 52.9(74.3] 679 | 82.1 92.9 79
[Coupon 100 100 | 100 100 100 100
Crossing 100 100] 95 100 100 100
Towds 59 6.2 [09.0 951 9.6 508
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Vasc 7.7 [313 207
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Walking2 398 [208 106
[Woman 886 [ 328 931 931
Average 49 [465] 529 | 449 549] 60.6 | 647 [36.4 701]655] 69.9
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Table 2. A per-video comparison on the Temple-Color dataset [17] with 128 videos.
The results are shown in terms of overlap precision (OP) (in percent), which corre-
sponds to the PASCAL criterion. The best and second best results for each video are
shown in red and blue font respectively. Our approach achieves a significant gain of
4.6% in mean OP, compared to the second best tracker (SRDCFdecon).
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