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FECTURE Z:
IMAGE FORMATION

Al

5¢ Pin-hole, and thin lens cameras

”

s [llumination

NA

* Homographies

\/

¢ Epipolar Geometry

£
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3¢ Canonical Frames
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THE PIN-HOLE CAMERA

S

¢ A brightly illuminated scene will be projected

onto a wall opposite of the pin-hole.

¢ The image 1s rotated 180"

(C) 266E FPEERE-EEFIF FGEESEEERN



Optical Centre

A

¢ From similar triangles we get:
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¢ More generally, we write:
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f-focal length, s-skew, a-aspect ratio,
c-projection of optical centre
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f-focal length, s-skew, a-aspect ratio,
c-projection of optical centre
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Al

s For a general position of the world coordinate

system (WCS) we have:
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THIN LENS CAMERA

NA

¢ But we use lenses, not pin-hole cameras!
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¢ A thin lens 1s a (positive) lens with d << f
A

Focal point

Optical Centre
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2t Parallel rays converge at the focal points

Al

¢ Rays through the optical centre are not
refracted



THIN LENS CAMERA

Image plane

Focal poi
Optical Ce

Focal point
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¢ Thin lens relation (from similar triangles):
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THIN LENS CAMERA

Image plane

Focal poi

Y

‘¢ Focus at one depth only.

Objects at other depths are blurred.
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Image plane Aperture

Focal point

27 <

A

1S Adding an aperture increases the ertb-of-ﬁelg,

the range which 1s sharp in the image.

A

¢ A compromise between pinhole and thin lens.



Correct Barrel distortion Pin-cushion distortion

Al
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Radial distortion

A

3 For zoom lenses: Barrel at wide FoV
pin-cushion at narrow FoV
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Correct Darkened periphery
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¢Vignetting and cos’-law
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THIN LENS EFFECTS
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http://software.canon-europe.com/files/documents/EF T.ens Work Book 10 EN.pdf
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http://software.canon-europe.com/files/documents/EF_Lens_Work_Book_10_EN.pdf
http://software.canon-europe.com/files/documents/EF_Lens_Work_Book_10_EN.pdf

I

‘¢ Image intensity 1s linear in radiance
(at least before gamma correction)

N
7

'« E.g. adding a second, 1dentical light source
will double the sensor activation.
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S-Sensor absorption spectrum, r-reflectance
spectrum of object, e-emission spectrum of
light source (attenuated by the atmosphere)
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A

2¢ Mlean subtraction, derivatives, and other DC
free linear filters remove a condtant offset in
Intensity

“¢ Normalising a patch by e.g. the 1>-norm

removes Jcaltngs of the intensity.

‘¢ Affine invariance by combining both.

; Normalised Normalised
Input Orient

orient nput




Al

¢ For a planar object, we can imagine a world
coordinate system fixed to the object
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Al

¢ For a planar object, we can imagine a world
coordinate system fixed to the object

Optical Centre
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¢ In general, we can use homographies to
describe the transformation between any two

planes 1n 3D.

¢ Since the matrix H 1s only unique up to scale,
it has only 8 degrees of freedom.

¢ It can be estimated from 4 or more
corresponding points on the two planes.

¢ See e.g. R. Hartley and A. Zisserman,
Multiple View Geometry for Computer Vision



A

¢ The geometry of two cameras:

camera 1

epipolar plané—\ X
( ) camera 2

baseline

S epipolar lines ¥

Al

“te1, e are called epipoles. 01,09 are the optical
centres.



2

2 So 1n general, two view geometry only tells
us that a corresponding point lies somewhere
along a line.

A

‘¢ In practice, we often know more, as objects
often have planar, or near planar surfaces.
1.e., we are close to the homography case.

A

¢ Also: If the views have a short relative
baseline, we can use even more simple
models.



CANONICAL FRAMES

”

st Aka. covariant frames, and invariant frames.

A

* Resample patches to canonical frame.

¢ Points from e.g. Harris detector, or SIFT.
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CANONICAL FRAMES

Y

2 After resampling matching 1s much easier.
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Al

e A hierarchy of transformations:
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A

¢ Scale +translation: Useful if we know that
there 1s no rotation.

E.g. for a camera mounted 1n a car, looking at
upright pedestrians.

2 points Canonical frame

(0,1)

1(1,0)




A

¢ Similarity: Full invariance in image plane,
none outside 1mage plane.
Usetul e.g. for pose estimation.

2 points Canonical frame

(0.1)




¢ Affine: Deals with most common projective
distortions. Good 1if patch size 1s small relative
to distance to patch.

3 points Canonical frame

(1,0)




A

2 Plane projective: Full modelling of a plane 1n
3D. Requires more image measurements, but
1s better for extreme view angles.

4 points Canonical frame

. . (0,1)
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CANONICAL FRAMES

Al

s Combinatoral 1ssues

Al
N

“ From Harris or SIFT we get images tull of
keypoints.
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.

2¢ Combinatoral issues

.

¢ From Harris or SIFT we get images full of
keypoints.

.

2« Using the points, we want to generate
frames 1n both reference and query view
and match them.

2 We don't want to miss a combination in one
of the images, but we don't want to
generate too many combinations either.
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A

s¢ Solutions:

Al

¢ Use each point as a reference point.

N2

3¢ Restrict frame construction to k-nearest
neighbours 1n scale space (or image plane).

2

¢ Remove duplicate groupings, and
reflections.



A

¢ Questions/comments on paper and lecture

Al

*E.g. Why k-nearest neighbours 1n scale-

space? Are there other usetul canonical
frames?...



