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Geometric Hashing

( c )  2 0 0 8  P e r - E r i k  F o r s s é n



Motivation

Finding the best match to a query descriptor q in 
a database with N prototypes p1...pN costs 
O(N).

For a database with thousands or millions of 
descriptors this is expensive.

A tree can find several good matches (near 
neighbours) in O(log N) time.

A hash table can find a good match in O(1) time.
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High dimensional 
spaces

Distances in high dimensional spaces are 
higher on average!

Small distances are unlikely in        for high D. 
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Expected distance for two points in D-dim unit cube

RD



High dimensional 
spaces

Volume shrinks relative to area.
Example: unit “ball”

This means that a decision region in       has
increasingly more edges as D increases.
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High dimensional 
spaces

Box decision regions have 2 edges in R1,
4 in R2, 6 in R3, 8 in R4,... 2D in RD

                ...
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kD-Trees

A binary tree for search in 
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kD-Trees

Binary search only works in 1D,
in higher dimensions the kD-tree gives a
near neighbour.

Tree construction algorithm:

    1. Select dimension kn with largest variance
    2. Split dataset in two along selected
        dimension at median value, mn.
    3. Repeat for each of the subsets.

( c )  2 0 0 8  P e r - E r i k  F o r s s é n



kD-Trees

Search for one neighbour is just one pass 
down the tree, and thus computation time is 
proportional to tree depth, d

Tree depth

To find more neighbours, the original 
algorithm suggested a depth-first search with 
branch pruning.

If ecurr<q[kn]-mn then skip branch. 
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d = !log2 N"



Best-bin-first

Depth-first search works poorly in high 
dimensional spaces, and thus Beis&Lowe 
suggest a best-first search instead.

Algorithm:

    1. At each node, store the distance 
en=q[kn]-mn in a priority queue. Always insert 
lowest value first.
    2. Go down alternate branch of the first 
node in the queue if en<ecurr
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Best-bin-first
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Ball Trees

Omohundro 89, Metric Tree Uhlmann 91

A range search method:
find all neighbours within a distance 
from query vector

Each node in tree has a centre p, and a radius r

     p is average of all leaves
     r is maximum distance from p to a leaf
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Ball Trees

An optimal ball tree is constructed bottom up. 
Very expensive. E.g. using agglomerative 
clustering:

    1. Set each sample to be one cluster
    2. Merge the two most similar clusters
    3. Repeat step 2 until no clusters are left.

Agglomerative clustering generates a 
dendrogram, or similarity tree. This can be 
pruned using varius heuristics to form ball tree.
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Ball Trees

Example of a search:

At each node, the distances to circle centres 
are computed, and compared to the radius.
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Leibe&Mikolajczyk&Schiele, BMVC’06



Ball Trees

Advantage: Good if range search is needed.
I.e. find all neighbours with d<dmax

Disadvantages:

Tree construction algorithm does not scale to 
very large datasets

A ball in       is not such a useful region shape 
if sample density varies in the feature space.
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K-means Tree

David Nistér and Henrik 
Stewénius, Scalable 
Recognition with a 
Vocabulary Tree, CVPR06

Hierarchical 
modification of the visual 
words idea from LE5 
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K-means Tree

Building the tree:

    1. Run K-means with e.g. K=10 on whole
        dataset.
    2. Partition dataset into K subsets using
        Voronoi regions
    3. Apply algorithm recursively on subsets.

The tree gets branching factor K.  
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K-means Tree

Using the tree:

      1. Compare query vector to prototypes at
          current level.
      2. Go down best branch
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K-means Tree

Used to compute a TF-IDF bag-of-words 
vector quickly.

Much faster than non-hierarchical visual 
words algorithm.

As in the kD-tree, the terminal leaf node is a 
near neighbour.

Not so successful as a near neighbour search, 
as prototypes are far from region edge in     .
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Hash Tables

An efficient way to perform lookup.

Each key is converted to an index using a 
hashing function:     index=H(key)

( c )  2 0 0 8  P e r - E r i k  F o r s s é n


















 

 

 

  




Hash Tables
Lookup is O(1) instead of e.g. O(N) in a list, 
O(log N) in a sorted list/tree etc.

Collisions can happen. i.e. different keys get the 
same index. Solved e.g. using chaining (linked 
lists), or linear probing (insertion at next free slot).

Linear probing typically wants a <80% filled 
table.

Hashing has poor cache locality.
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Geometric Hashing

Introduced in Lamdan&Wolfson ICCV’88
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Geometric Hashing

Modern example: Used for matching frames 
without descriptors by Chum & Matas, Geometric 
Hashing with Local Affine Frames, CVPR’06

Use pairs of affine frames.
Express frame 2 in
frame 1. 25 bins for angle
16 for d1, 6 for d2 & d3

9*106 unique values for
key to hash.
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Geometric Hashing
Design of H(key) is not discussed further.

Hash tables suffer from the same basic problem 
as trees: Neighbouring bins might contain the 
closest match. More neighbours in high 
dimensional spaces.

To deal with the neighbour problem, 
Chum&Matas construct 6 different tables (for 6 
different frame constructions) and run them in 
parallel.  

( c )  2 0 0 8  P e r - E r i k  F o r s s é n



Projects

Course is 8hp:
     5hp for lectures+articles+exam
     3hp for project.

Project part is 2 weeks of:
     programming&research
     writing a small report.
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Project suggestions

1.Comparison of kD-tree and K-means tree in 
terms of speed and accuracy.

2.Implementation of a bag-of-words 
recognition system (using existing feature 
detector code). Test how system parameters 
affect result.

3.Implementation and test of a new descriptor 
for a given detector.
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Project suggestions

4.Implement and test a voting scheme for 
global geometric deformation (e.g. similarity, 
or affine transform) of feature locations.

5.Learn a matching metric, and compare it to 
least squares matching.

6.Compare Chi2, EMD and least-squares on a 
problem of choice.

7.Your own suggestion.
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Exam

Everyone should bring calendar next week, so 
we can decide on a date for the written exam.
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Discussion

Questions/comments on paper and lecture.
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