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Lecture 3: Descriptors
• Terminology 

• An opportunity for machine learning  
DeCAF 

• Some common descriptors  
HOG/SIFT, Detector+descriptor pairs, BRIEF, Random Ferns, 
GaborJet, GIST, Colour Histograms, Shape descriptors
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Terminology
• An observation is constructed by 

detection (deciding where to sample) 
followed by 
description (deciding how to sample) 

• Detection is e.g. a canonical frame (LE2),  
or local affine region detection (LE4)  

• The resulting descriptor is a vector v  
that can be compared to memory, e.g. 

matching

memoryobservation

decision

match=True, if ||v �mk|| < "
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Terminology
• Desirable properties of a descriptor vector: 

1. invariance to nuisance parameters 
such as illumination, small shifts in 
position and scale of the region 

2. discriminative power  
such that different objects can be told 
apart

matching

memoryobservation

decision
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Terminology
• Nomenclature for descriptor properties: 

1. Texture  
Fine details, e.g. wrinkles 

2. Colour 
Surface reflectance properties. 

3. Shape  
Coarse details, e.g. contours and depth boundaries 

• In there is overlap, caused by the estimation process.
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Opportunity for Machine 
Learning

• With access to a large set of labeled examples, 
it is possible to use machine learning to find 
good image descriptors.

Dataset from: 
 Brown, Hua, Winder, ”Discriminative Learning of Local Image Descriptors”, PAMI 2011
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Opportunity for Machine 
Learning

• Methods to learn patch appearance (LE4,LE7) can be used. 

  + a learned descriptor can improve performance 
            significantly, compared to a hand-coded one.   

  - high-dimensional learning requires 
    large amounts of training data. 

  - learned descriptors are computationally 
          expensive. 

• Using hand-coded descriptors saves computations and is 
thus very common for practical applications.
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Opportunity for Machine 
Learning

• Example: Jeff Donahue, Yangqing Jia et al., ”DeCAF: A Deep 
Convolutional Activation Feature for Generic Visual Recognition”, 
ArXiv’13 

• DeCAF6 and DeCAF7 are pre-trained feature sets (i.e. descriptors) 
obtained by training the Convolutional Neural Network Classifier CAFFE 
on the ImageNet database (14M images, 1000 categories) 

• The CNN had 5 convolutional layers, and three fully connected layers, 
6-8, DeCAF6 and DeCAF7 are the outputs from layers 6&7. 

• Demonstrated usefulness as generic descriptors, for object recognition, 
subcategory recognition, and scene recognition.
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Designed descriptors
• Most descriptors in use today are still designed 

• In practise, all designed descriptors have 
parameters that have been tuned, i.e. a form of 
learning is also used here
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Intensity normalisation
• A very simple descriptor is the intensity 

normalized patch we saw in LE2 

• where ṽ =
⇥
f(x1) . . . f(xn)

⇤T
xn 2 patch

v =
ṽ � µ(ṽ)

�(ṽ)
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• Why not use ZNCC?  (see LE6)
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Intensity normalisation
• A very simple descriptor is the intensity normalized 

patch we saw in LE2 

• where 

• Why not use ZNCC?  (see LE6) 
 
 
descriptor comparison should be separable over 
descriptor dimensions.

ṽ =
⇥
f(x1) . . . f(xn)

⇤T
xn 2 patch

v =
ṽ � µ(ṽ)

�(ṽ)
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Intensity normalisation
• A very simple descriptor is the intensity 

normalized patch we saw in LE2 

• where 

• We will now go through some commonly used, 
and more advanced descriptors.

ṽ =
⇥
f(x1) . . . f(xn)

⇤T
xn 2 patch

v =
ṽ � µ(ṽ)

�(ṽ)
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The HOG descriptor
• Nearly identical to the SIFT-descriptor (LE4),  

but adapted to dense grids

Image from SIFT paper [Lowe IJCV’04]
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The HOG descriptor
• Compute gradient with small filters 

• Perform orientation binning with 

rf(x) = (f ⇤

d
x

d
y

�
)(x)

d
x

= [�1 0 1]

dy = [�1 0 1]T

hk =
X

x2cell

|rf(x)|Bk(tan
�1 rf(x))
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The HOG descriptor
• Each cell now contains K values (K=9) 

• These are grouped into 2x2 blocks  

• and finally, the blocks are normalized

hl =
⇥
hl,0 . . . hl,9

⇤T

b̃ =
⇥
hT
1 hT

2 hT
3 hT

4

⇤T

b = b̃/kb̃+ ✏k
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The HOG descriptor
• Each cell now contains K values (K=9) 

• These are grouped into 2x2 blocks 

• and finally, the blocks are normalized 

• Blocks typically overlap, so each cell belongs to 
several blocks

hl =
⇥
hl,0 . . . hl,9

⇤T

b̃ =
⇥
hT
1 hT

2 hT
3 hT

4

⇤T

b = b̃/kb̃+ ✏k
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The HOG descriptor
• The HOG descriptor was introduced in the paper 

”Histograms of Oriented Gradients for Human 
Detection”, Dalal & Triggs, CVPR’05 

• Still very common (>9500 citations in Google Scholar) 



© 2 0 1 5  P e r - E r i k  F o r s s é n

Detector+descriptor pairs
• SIFT, Scale Invariant Feature Transform [D. Lowe 

ICCV’99, IJCV’04] 

• An interest point detector (DoG) + a descriptor 

• 4x4 HOG blocks, with a single common 
normalization 

• Other common detector+descriptor features: 
SURF, BRISK, ORB, SFOP, FREAK (Covered in 
LE4)
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BRIEF
• M. Calonder et al., ”BRIEF: Binary Robust Independent 

Elementary Features”, ECCV’10, (also PAMI’12) 

• A binary descriptor based on intensity differences of pixel 
pairs, x,y 

•   

•                                  for an SxS patch.

⌧(x,y) =

(
1 if I(x) < I(y)

0 otherwise.
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BRIEF
• M. Calonder et al., ”BRIEF: Binary Robust Independent 

Elementary Features”, ECCV’10, (also PAMI’12) 

• 256 bit instead of e.g. 128 byte for SIFT (4x size reduction) 

• Descriptor comparison is done with 

• Very efficient when supported by machine SIMD  
instructions (e.g. SSE4+ and ARM NEON)
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BRIEF related
• Detector+descriptors:  BRISK, FREAK, ORB are all based on 

BRIEF.  

• Census transform (R. Zabih, J. Woodfill, ECCV’94)  
Compare central pixel to neighbours in patch and check signs. 

• Local binary pattern (LBP) (T. Ojala et al., JMLR’96)  
Compare central pixel to neighbours in a circle and check signs. 

• Maximum entropy matching by F. Lundberg at CVL (”Vision for 
a UAV helicopter”, K. Nordberg et al. IROS’02 ws.) describes 
256 bit descriptor with x,y uniformly sampled in 32x32 patch.
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Random Ferns
• M. Özuysal, P. Fua, V. Lepetit, ”Fast Keypoint Recognition in Ten 

Lines of Code”, CVPR’07 

• Treats descriptor matching as a classification problem.  
Each patch on an object is treated as a class. 

• Split BRIEF style bit tests fj into groups called ferns (a fern is 
typically S=10 bit tests) 

• Train patch appearance on re-sampled local neighbourhood with 
added noise.
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Random Ferns
• Train patch appearance on re-sampled local neighbourhood with 

added noise. 

• Many samples are needed (2S=1024 bins to populate, for S=10)  

• Frequency count with rule of succession bias (aka. Dirchlet prior) 

• i.e. for unpopulated bins, a uniform class distribution is assumed.
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Gabor Jet
• A set of responses from filters that are oriented and localized wavelets 

• A filter bank. Other filter banks include e.g. derivative filters in multiple 
scales, and wavelets.

Tai Sing Lee, ”Image Representation using Gabor Wavelets”, PAMI’96
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Gabor Jet
• Filter banks are typically used to classify texture,  

e.g. E. Hayman et al. ”On the Significance of Real-World Conditions for 
Material Classification”, ECCV’04

KTH TIPS2 dataset 
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GIST
• A. Olivia and A. Torralba, ”Modeling the Shape 

of the Scene: A Holistic Representation of the 
Spatial Envelope”, IJCV’01 

• A global feature for images that is useful in 
scene categorization.  

• Motivation: Perceptual studies indicate that 
scene category is recognized before semantic 
information such as objects and their relations.
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GIST
• Scene categorization dataset

J. Vogel et al. ”Categorization of Natural Scenes: Local versus Global Information and the Role of Color”, 
Applied Perception 2007
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GIST examples

http://people.csail.mit.edu/torralba/code/spatialenvelope/

• Gabor jets in 4x4 grid (4 scales, 8 directions) on 
downsampled images (128x128) 512 element descriptor.

http://people.csail.mit.edu/torralba/code/spatialenvelope/
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Colour histograms
• Many different variants. E.g. from C. Carson et al. 

”Blobworld: A system for region-based image indexing 
and retrieval”, ICVIS’99  
 
1. Transform region of interest into La*b* colour space. 
2. Use coarse binning of Lab space, 5x10x10 bins  
3. select the 218 bins that fall within the RGB gamut.  

• Spatial position is discarded.  
⇒ Shift insensitive, scale insensitive.
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Colour histograms
• Colour Names, J. van de Weijer et al. ”Learning Color 

Names for Real-world Applications”, TIP’09 

• Label pixels as one of 11 different colours:  

• Non-uniform decision regions in Lab space. 

• Descriptor by histogramming.
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Difficult cases for 
Descriptors

• Background clutter in 3D scenes  
 
 
 
 
 

• Patches cut out around features will have 
varying background.
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Difficult cases for 
Descriptors

• Large illumination changes 
 
 
 
 
 

• Gradient strength changes non-uniformly. 

• Contrast may be inverted.
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Contour SIFT
• Idea: Use a detector that produces contours, e.g. 

MSER or MSCR 
 
 
 
 
 

• Region shape is robust to changes outside the 
region

Input image 64 random MSER- regions
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Contour SIFT
• Compute a descriptor from the binary mask of the 

region instead of the grey-scale patch. 
 
 
 
 
 

• Less descriptive patches, but more robust to 
illumination and background clutter
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Contour SIFT
• Shape Descriptors for Maximally Stable Extremal 

Regions, Forssén&Lowe, ICCV’07 

• Use the “standard SIFT pipeline” 

• Re-tune all parameters to maximise performance 
on binary patches. 

• Use detected correspondences on Mikolajczyk’s 
data set for parameter tuning.
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Shape descriptors
• Other common shape descriptors are: the shape 

context descriptor, and Fourier descriptors. 

• Shape Context descriptors:  
S. Belongie, J. Malik, J. Piuzicha, ”Shape Matching and Object 
Recognition Using Shape Contexts”, IEEE TPAMI 2002 

• Fourier descriptors:  
Granlund, G.H.: ”Fourier Preprocessing for Hand Print Character 
Recognition”. IEEE Trans. on Computers C–21(2), 195–201 (1972)
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Shape descriptors
• S. Belongie, J. Malik, J. Piuzicha, ”Shape Matching 

and Object Recognition Using Shape Contexts”, IEEE 
TPAMI 2002 

• Log-polar histogram 
of points along the  
contour of a binary  
mask.
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Shape descriptors
• F. Larsson, M. Felsberg, P.-E. Forssén, ”Correlating Fourier 

descriptors of local patches for road sign recognition”, 
2011, IET Computer Vision, (5), 4, 244-254. 

• Represent points  
along contour as  
complex numbers 
z(t)=x(t)+iy(t), and 
apply the Fourier  
transform on the  
resultant periodic 
signal.
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Summary
• Descriptors estimate shape, texture and 

colour. 

• Descriptors can be learned, but for speed, and 
in practise, hand coded descriptors are more 
common. 

• Descriptors where comparison is separable 
allow fast ANN search.
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Discussion
• Questions/comments on paper:  
 
M. Calonder et al., ”BRIEF: Binary Robust 
Independent Elementary Features”, ECCV’10, 
(or extended version in PAMI’12)
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Next week
• paper to read for next week:  
 
S. Leutenegger et al., ”BRISK: Binary Robust 
Invariant Scalable Keypoints”, ICCV’11


