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Seminar 8 date

* All seminars shifted by one week.

e EXxception:
_E8 will take place on Wednesday March 25
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Lecture 5: Compound Descriptors
and Metrics

observation memory [RERYIAINglONVANRaE\V/SR{elo{V 10

\ / on how to construct the
observation.

matching

i e This lecture is about how to
decision arrange observations for
matching.

 We will also look at similarity,
and distance measures.
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| ecture 5: Compound
Descriptors and Metrics

e Feature Constellations

 Bags of Features and Visual Words
—eature Sampling, Spatial Pyramids

| n
* Descriptor distances
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Feature constellations

 Both Local appearance and constellations
contribute to the recognition process.

e Case study of visual agnosia:
Oliver Sacks, "The man who misstook his wife for a
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Feature constellations




Feature constellations

D.G. Lowe, "Local Feature View Clustering for 3D
Object Recognition”, CVPR'O1

A view based object
representation.

An object Is a set of
views. |In each view
an affine transform

constellation.
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Feature constellations

e D.G. Lowe, "Local

3

D Object Recogn

—eature View Clustering for

ition”, CVPR’0O1

 During learning, similar views are clustered into

fewer, if they can agree on a feature
- arrangement under an affine transformation. ,



Feature constellations

 D.G. Lowe, "Local Feature View Clustering for 3D
Object Recognition”, CVPR’01

* In recognition, matching is first made by having each
feature in the query image vote for matching views.

n n
, \‘ ™ ..{ S el 28 r‘ o 2 2 ONS LA 4 - bt i L ol 7 ‘ 3 \
= Ypavia R D ¥ T = : v UAT S ihes hé ottt L AR (




Bags of features

* Another order of magnitude can be handled by

Bags of features (introduced in todays paper)
J. Sivic and A. Zisserman, "Video Google: A text retrieval
approach to object matching in videos”, ICCV’'03

m Bag of features
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http://people.csail.mit.edu/torralba/shortCourseRLOC/

Visual Words

* Closely related to Bags of Keypoints, Bags of features
(BoF), Bags of words (BoW), and Texton histograms.

G. Csurka et al, "Visual Categorization with Bags of Keypoints”,
EC@\04

e Used for quickly indexing large datasets.
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Visual Words

* Descriptor space (e.g. SIFT) is vector guantized
iInto K parts on large training set.

» Clustering is done in whitened space:
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Visual Words

* The result of VQ is that probabi
words Is somewhat equalized (

ity of visua

not complet

ely).



Visual Words

* Analogy with text document matching.

e Each document (i.e. image) is represented as a vector
of (TF-IDF) word frequencies (a bag of features)
de N
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Visual Words

* Image matching is done by a normalised scalar
product:

PO
V., Vp = COS ¢

. An /nverted f//e makes real t|me matchlng
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Bag of Features

e |f we set TF=Nkq, and omit IDF we get a
nistogram of visual word occurrences.

e This is called a bag-of-features/

bag-of-words/bag-of-keypoints in the literature.
- G. Csurka et al, "Visual Categorization with Bags of
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Bag of Features

* The bag-of-teatures vector is often fed into a
machine learning algorithm (LE7) or used in
ANN search (LEG)

e Typically K is large and most values are zero.
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SKip Interest points?

 E. Nowak, Jurie, Triggs, "Sampling Strategies for
Bag-of-Features Image Classitication”, ECCV'06

 More descriptors in histogram computation
result in a more informative BoF vector.
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SKip Interest points?

e For low detection thresholds detection is both highly

blased and noisy.




Spatial Pyramids

_azebnink, Schmid &Ponce, "Beyond Bags of
—eatures: Spatial Pyramid Matching for Recognizing
Natural Scene Categories”, CVPR'06

level 0 level 1
* o + + + ® O + +

Essentially:
stack BoF
vectors in grids
of several
different sizes
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Spatial Pyramids

e Lazebnink, Schmid &Ponce, "Beyond Bags of
—eatures: Spatial Pyramid Matching for Recognizing
Natural Scene Categories”, CVPR'06

e Larger grid cells are down-weighted to compensate
for the higher likelihood of matches there.
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Deformable Part Models

e P Felzenswalb et

Multiscale, Defor
1. A coarse globa

2. A fixed number
arrangement.

al. "A Discriminatively Trained,
mable Part Model”, CVPR’08
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Deformable Part Models

 P. Felzenswalb et al. "A Discriminatively Trained,
Multiscale, Deformable Part Model”, CVPR'08

 Detection i1s done
ONn a coarse pattern

. Constellatlons are
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Hierarchical Compositional
Models

* Fidler and Leonardis, "Towards Scalable Representations of
Object Categories: Learning a Hierarchy of Parts”, CVPR'07

* Many recognition technigques (e.g. discriminative
ones) are linear in the number of object
categories.
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Hierarchical Compositional
Modaels

* Fidler and Leonardis, "Towards Scalable Representations of
Object Categories: Learning a Hierarchy of Parts”, CVPR’07

layer 1 layer 2 layer 3
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e Each part is a combination of parts in the previous layer.
(only a subset of parts shown above for L2-L6)
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Hierarchical Compositional
Models

* Fidler and Leonardis, "Towards Scalable Representations of
Object Categories: Learning a Hierarchy of Parts”, CVPR'07

* Recognition is done layer by layer, by having features
describe all detected L1 features in the image (a generative

approach).
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Hierarchical Compositional
Models

* Fidler and Leonardis, "Towards Scalable Representations of
Object Categories: Learning a Hierarchy of Parts”, CVPR'07

* Learning is done incrementally, one category at a time.

e Features already present can be re-used in new categories.
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Descriptor Distances

e For a descriptor g in a query image. Which
prototype in memory (p1,p2,...,PN) IS most likely
to correspond to the same world object?




Descriptor Distances

e For a descriptor g in a query image. Which
prototype in memory (p1,p2,...,PN) IS most likely
to correspond to the same world object?

* Assuming additive i.i.d.DGaussian noise on all
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Descriptor Distances

* S0, the match with smallest distance is most likely
correct, assuming I.i.d. Gaussian noise.

* \WWhat about the scalar product for normalised
vectors/NCC?




Chi2 Distance

 Many descriptors (e.g. SIFT) are histogram-like
IN their nature.

e For histograms, the histogram values typically
follow the (discrete)
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Chi2 Distance

e For large values of u, (e.g. 1000) a (continuous)

Gaussian can approximate the Poisson
distribution:

L -0.5(k-)?/n
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Chi2 Distance

* |f we estimate the variance by:
= (pr +qr)/2

* \We find that the most likely match is the one with
the smallest Chi-squared distance:
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Sqguare root matching

 Another similar histogram measure Is the square

root distance: &

dy/2(q, Pk)2 = Z(\/Z?Tcl = \/E)Q
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Histogram Intersection

* Histogram intersection similarity measure:
D
d(p,q) = Y _min(p;, ¢:)
gi=ili

* Another common similarity measure for histogram
type data.
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Earth Mover's Distance

* |In histograms, neighbouring bins are

typically correlated

[ S 1 *
* Instead of falling in bin i, a sample is likely to fall in
bin i+1.
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Earth Mover's Distance

* Distance=cost of moving values in p to q
cost=amount*distance

* First solve a linear programming problem:
the transportation problem, Hitchcock 1941.
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Earth Mover's Distance

e Transportation problem, cost function:

D)
minxxfijdij where d;; = |i — j|
%
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Earth Mover's Distance

* Now compute EMD as: = . e
e Zj:l fijli —J
d(p, q) = min

D D
Jij sz’—l y:j—l i

* The denominator is needed it histograms are
computed from variable numbers of samples.
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Pyramid Match Kernel

« EMD approximation:
Grauman&Darrell, ICCV’05, "Pyramid Match Kernels: Discriminative
Classification with sets of image features”, ICCV05

* Create "scale pyramid” where bins are
hierarchically grouped.

R T e e G |
- -

% - < s - a A ~ " o T k- >
- Sy # : - " i 5 -~ £ § T YT
e Rt £ it B e e TS - A PSS ST ." ’ = - o
I L ra\ o s WAL BT fal 4 2al’ ¥ P s A i g s i T 1 TE=t sy |




Ratio Score

e |f we have best matches for descriptors g+ and
gq in the image. Which one is better?

 Both similarity and risk of misclassification
matter!




Ratio Score

PDF for correct matches —+—
PDF for incorrect matches
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|_earning the Metric

 What we ultimately want is to distinguish good
feature matches from bad.

* Collect known corresponding descriptors:
{(Pkan)}{( and set dk = Pr — qk
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|_earning the Metric

* Find a whitening transform T from the covariance
maitrix:

K
1 .
L ;_1: d,di with TCT! =1

* Valid solutions:




|_earning the Metric

ind R from PCA of transformed SIFT feature

0aCe.
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|_earning the Metric

* This Mahalanobis metric for features was published
at ICCVO7 by Mikolajczyk&Matas, SIFT 128—40 dim

* A similar method that only finds a rotation called
inear discriminant embedding(LDE) also at ICCV07

by Hua&Brown&Wmder
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|_earning the Metric

e Linear Discriminant Embedding(LDE)

« Maximise el o2
J(W) i Zouther(z,g) ( ])

zinlier(i,j) wl (p’& g qj)2




|_earning the Metric

e J(w) is maximised by eigenvectors with large
eigenvalues in B~ A

~

 Eigenvalues of B are setto  Ai = max(A;, Ay)

r = arg min Q
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|_earning the Metric

 Some LDE results on grey-scale patches:
Reducing the amount of power reg:
20%
10% §2
2% .
0% =~ e
* Linear filters found on grey-scale patches:




DIsScuUssIon

e Questions/comments on today's paper:

J. Sivic, A. Zisserman, "Video Google: A Text
Retrieval Approach to Object Matching in
~ Videos’, ICCV 2003
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Paper for next week

 Paper to read for next week:

M. Muja and D.G. Lowe, "Scalable Nearest
Neighbour Algorithms for High Dimensional
Data”, TPAMI 2014




