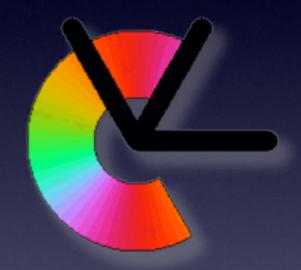
Visual Object Recognition

Lecture 6: Tree Search and Hashing



Per-Erik Forssén, docent Computer Vision Laboratory Department of Electrical Engineering Linköping University

Seminar 8 date

- All seminars have been shifted by one week (again).
- Time for LE8 is now April 7 12.30-15.

Lecture 6: Tree Search and Hashing

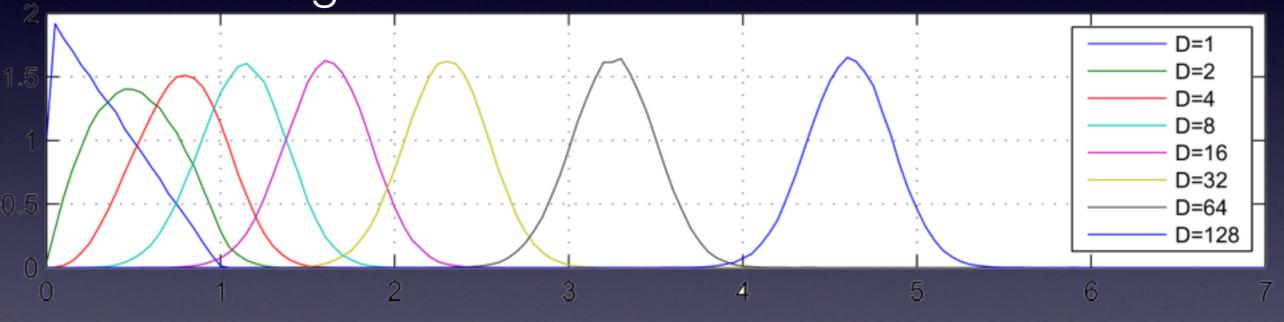
- High dimensional spaces
 Distances, Region edges
- Search Trees
 kD-Trees, Best Bin First (BBF), Ball Trees, K-means tree
- Hashing
 Geometric Hashing (GH), Locality Sensitive Hashing (LSH)

Motivation

- Finding the best match to a query descriptor **q** in a database with N prototypes **p**₁...**p**_N costs O(N).
- For a database with thousands or millions of descriptors this is expensive.
- A search tree can find several good matches (near neighbours) in O(log N) time.
- A hash table can find a good match in O(1) time.

High dimensional spaces

 Distances in high dimensional spaces are higher on average!



Expected distance for two points in D-dim unit cube

• Small distances are unlikely in \mathbb{R}^D for high D.

High dimensional spaces

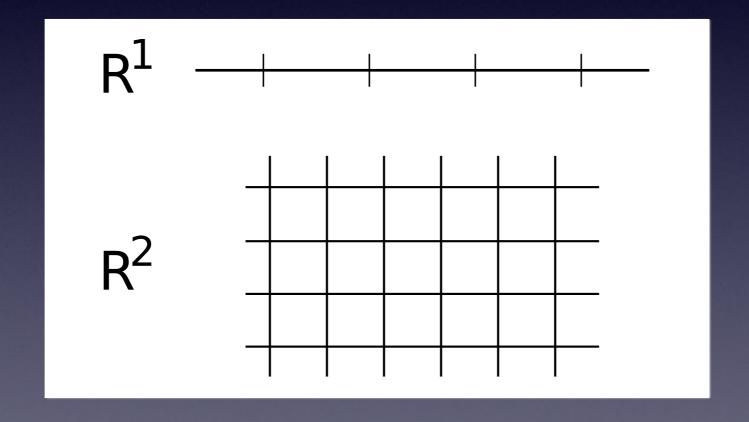
Volume shrinks relative to area.
 Example: unit "ball"

dimension	volume	area	volume/area
1	2r	2	r
2	πr^2	$2\pi r$	r/2
3	$4\pi r^3/3$	$4\pi r^2$	r/3
4	$\pi^2 r^4/2$	$2\pi^2 r^3$	r/4

• This means that a decision region in \mathbb{R}^D has increasingly more edges as D increases.

High dimensional spaces

E.g. box decision regions have 2 edges in R¹,
 4 in R², 6 in R³, 8 in R⁴,... 2D in R^D



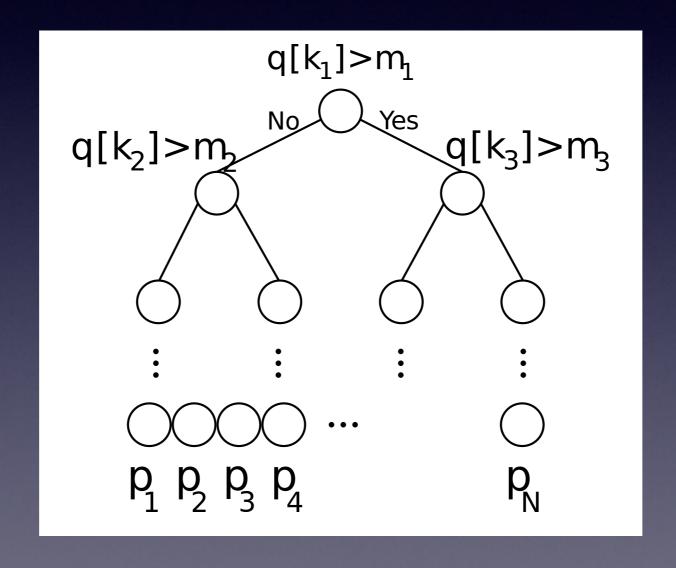
© 2015 PER-ERIK FORSSÉN

Binary search

- Binary search to find scalar q in a list with N entries p₁...p_N:
 - 1. Sort values such that $p_n \ge p_{n+1} \quad \forall n$
 - 2. Set I=1 h=N
 - 3. while
 - 4. $m = \lfloor (l+h)/2 \rfloor$
 - 5. if m==Ī break
 - 6. if q>p(m) l=m
 - 7. else h=m
- Complexity O(log(N)), exact solution found.

kD-Trees

Generalization of binary search to nD:



kD-Trees

- Binary search only works in 1D, in higher dimensions the kD-tree gives a near neighbour.
- Tree construction algorithm:
 - 1. Select dimension k_n with largest variance
 - 2. Split dataset in two along selected dimension at median value, m_n.
 - 3. Repeat for each of the subsets.

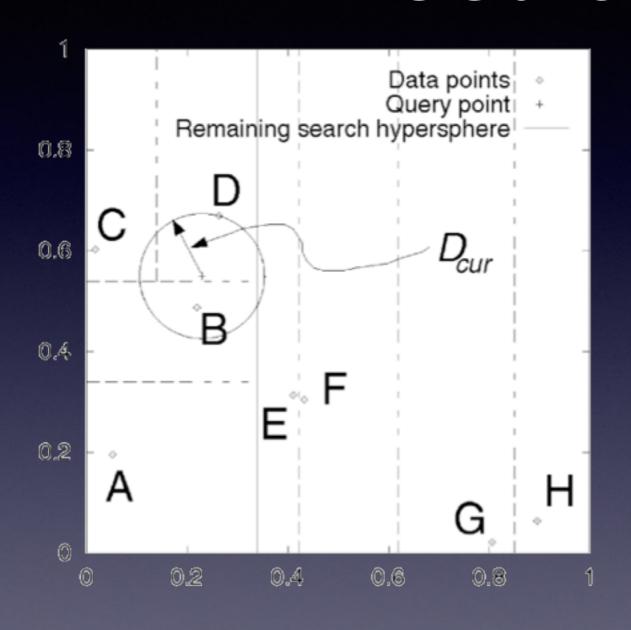
kD-Trees

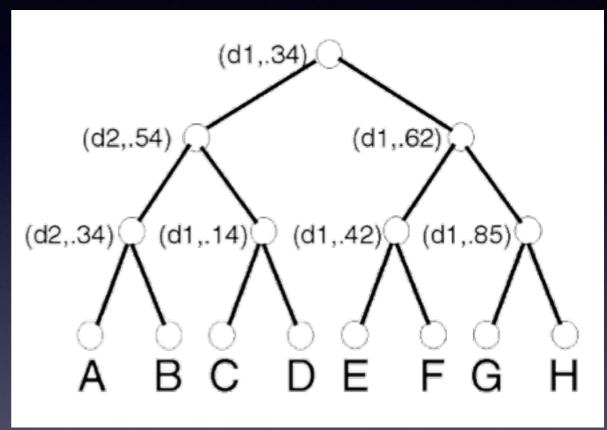
- Search for one neighbour is just one pass down the tree, and thus computation time is proportional to tree depth, d
- Tree depth $d = \lceil \log_2 N \rceil$
- To find more neighbours, the original algorithm suggested a depth-first search with branch pruning.
- If $e_{curr} < q[k_n]-m_n$ then skip branch.

Best-bin-first

- Depth-first search works poorly in high dimensional spaces, and thus [Beis&Lowe CVPR'97] suggest a best-first search instead.
- Algorithm:
 - 1. At each node, store the distance $e_n = q[k_n] m_n$ in a *priority queue*. Always insert lowest value first.
 - 2. Go down alternate branch of the first node in the queue if $e_n < e_{curr}$

Best-bin-first





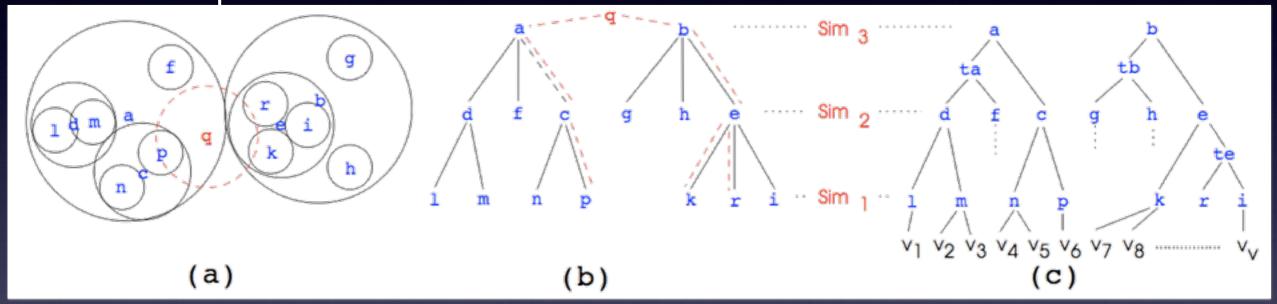
Multiple randomized kD-trees

- Multiple randomized kD-trees
 [Silpa-Anan& Hartley, CVPR'08]
- Create multiple kD-trees with small random variations:
 - In tree construction, select the D dimensions with largest variance, draw one at random (e.g. D=5).
- Back-track in all trees in parallel, using best-first search.

- [Omohundro TR'89], Metric Tree [Uhlmann IPL'91]
- A *radius nearest neighbour* (RNN) method: find all neighbours within a distance from the query vector
- Each node in tree has a centre p, and a radius r
 - **p** is average of all leaves r is maximum distance from p to a leaf

- An optimal ball tree is constructed bottom up.
 Very expensive. E.g. using agglomerative clustering:
 - 1. Set each sample to be one cluster
 - 2. Merge the two most similar clusters
 - 3. Repeat step 2 until no clusters are left.
- Agglomerative clustering generates a dendrogram, or similarity tree. This can be pruned using various heuristics to form the ball tree.

Example of a search:

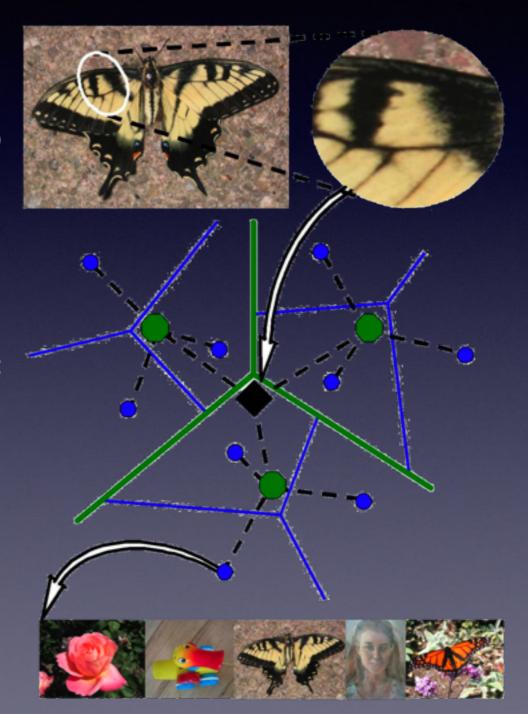


Leibe&Mikolajczyk&Schiele, BMVC'06

 At each node, the distances to circle centres are computed, and compared to the radius.

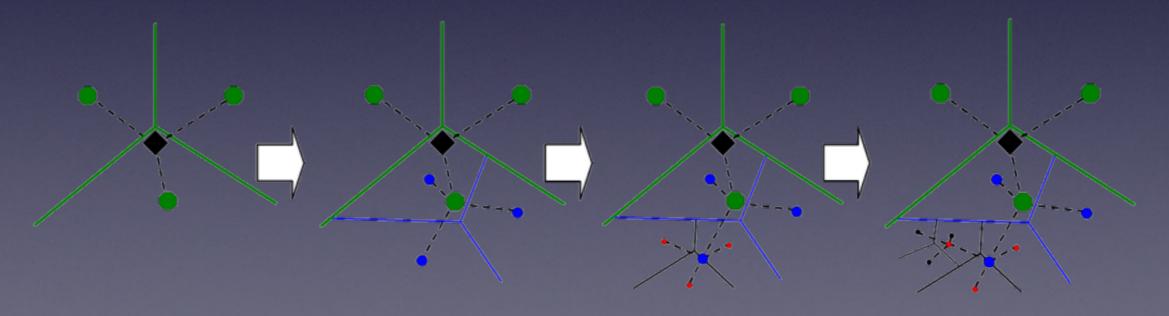
- Advantage: Good if RNN is needed.
 I.e. find all neighbours with d<d_{max}
- Disadvantages:
 - Tree construction algorithm does not scale to very large datasets
 - A ball in \mathbb{R}^D is not such a useful region shape if sample density varies in the feature space.

- E.g. David Nistér and Henrik Stewénius, Scalable Recognition with a Vocabulary Tree, CVPR06
- Hierarchical modification of the visual words idea from LE5



- Building the tree:
 - 1. Run K-means with e.g. K=10 on whole dataset.
 - 2. Partition dataset into K subsets using Voronoi regions
 - 3. Apply algorithm recursively on subsets.
- The tree gets branching factor K.

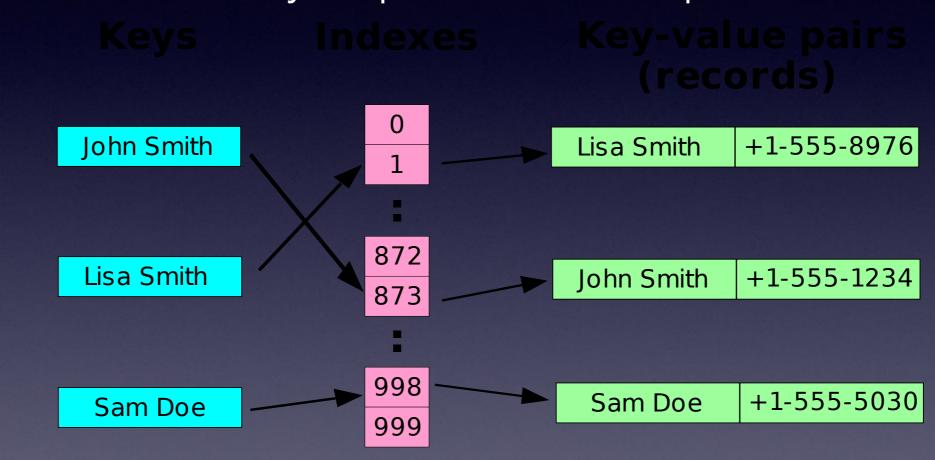
- Using the tree:
 - 1. Compare query vector to prototypes at current level.
 - 2. Go down best branch



- Used to compute a TF-IDF bag-of-words vector quickly.
- Much faster than non-hierarchical visual words algorithm.
- As in the kD-tree, the terminal leaf node is a near neighbour.
- The best-bin-first strategy makes the K-means tree a strong contender for ANN (today's paper).

Hash Tables

An efficient way to perform lookup.



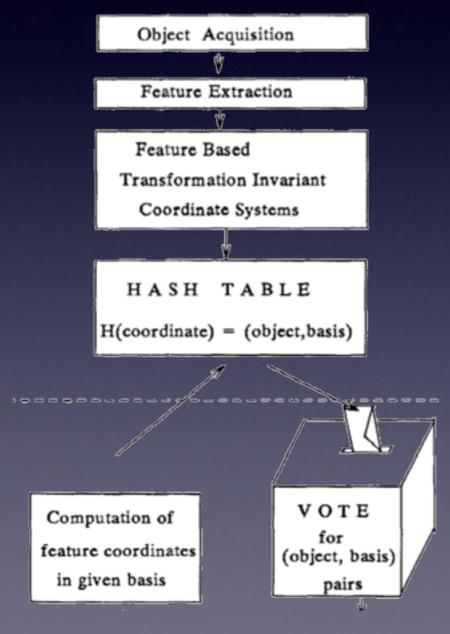
 Each key is converted to an index using a hashing function: index=H(key)

Hash Tables

- Lookup is O(1) instead of e.g. O(N) in a list, O(log N) in a sorted list/tree etc.
- Collisions can happen. i.e. different keys get the same index. Solved e.g. using *chaining* (linked lists), or *linear probing* (insertion at next free slot).
- Linear probing typically wants a <80% filled table.
- Hashing has poor cache locality.

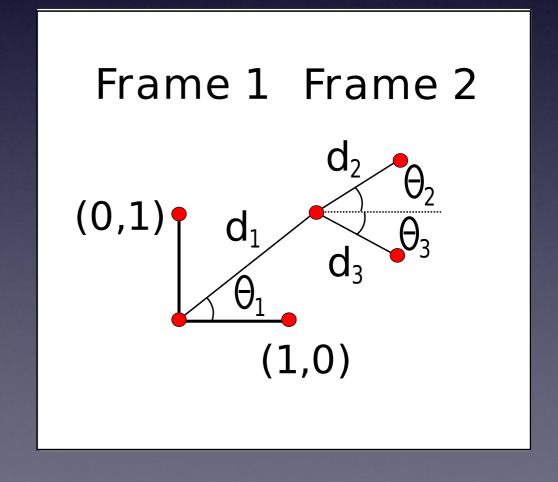
Geometric Hashing

Introduced in Lamdan&Wolfson ICCV'88



Geometric Hashing

- Modern example: Used for matching frames without descriptors by Chum & Matas, Geometric Hashing with Local Affine Frames, CVPR'06
- Use pairs of affine frames.
 Express frame 2 in
 frame 1. 25 bins for angle
 16 for d₁, 6 for d₂ & d₃
- 9*10⁶ unique values for key to hash.



Geometric Hashing

- Design of H(key) is not discussed further.
- GH suffers from the same basic problem as trees: Neighbouring bins might contain the closest match. A low dimensional space is needed.
- To further deal with the neighbour problem, Chum&Matas construct 6 different tables (for 6 different frame constructions) and run them in parallel.

 LSH Introduces locality concept in general for hashing. Introduced by Indyk&Mowani at STC'98. See also MP-LSH paper [Lv et al., ICVLDB'07 2008]

 Hash functions are designed to increase risk of collision for similar data points=be locality sensitive.

- Common choice: $H(\mathbf{q}) = (H_1(\mathbf{q}), \dots, H_L(\mathbf{q}))$
- Where $H_l(\mathbf{q}) = \lfloor \hat{\mathbf{n}}_l^T \mathbf{q}/w \rfloor$ are random quantized projections.

- Common choice: $H(\mathbf{q}) = (H_1(\mathbf{q}), \dots, H_L(\mathbf{q}))$
- Where $H_l(\mathbf{q}) = \lfloor \hat{\mathbf{n}}_l^T \mathbf{q}/w \rfloor$ are random quantized projections.
- LSH probing:
 - Alt 1: Construct several hash tables (randomly), and index them all using **q**.
 - Alt 2: Construct several queries, by adding random noise to **q**.

- LSH extensions:
 - Multi-probe LSH [Lv et al., ICVLDB'07]
 Instead perturbs H(q)
 Neighbours to H_I(q) are H_I(q)-1 and H_I(q)+1
 Try promising bins in sequence.
 - LSH Forest [Bawa et al ICWWW'05]
 Orders hash functions in a tree. Easier to update as new data is added. Also enables self tuning where parameters are adjusted.

Summary

- Decision regions in nD are dominated by edges
- Approximate KNN and RNN are implemented using either search trees or hashes.
- Trees are O(log(N)) and more space efficient than hashes.
- Hashes can be O(1), but most adjustments make them depend on N in practise.

Projects

- Course is 8hp:
 5hp for lectures+articles+exam
 3hp for project.
- Project part is 2 weeks of:
 programming&research
 writing a small report (a conference
 submission will also do).

Project examples

- 1. Repeat the comparison of LSH and FLANN in today's paper on your own binary feature set (test speedup vs. precision). (or with Forest LSH instead of MP-LSH).
- 2. Use e.g. VLfeat (http://www.vlfeat.org) to implement a bag-of-words recognition system. Test how system parameters affect result.
- 3. Integrate SFOP detector with BRIEF descriptor and compare results to e.g. SIFT.

Project examples

- 4. Implement and test a spatial verification for BoF style recognition (e.g. using similarity, or affine transform) of feature locations.
- 5. Learn a matching metric, and compare it to least squares matching.
- 6. Compare Chi², EMD and least-squares on a problem of choice.
- 7. Your own suggestion.

Exam

Everyone should bring calendar for the next seminar, so we can decide on a date for the written exam.

Plan: Middle of or end of April.

Discussion

Questions/comments today's paper:

M. Muja and D.G. Lowe, "Scalable Nearest Neighbour Algorithms for High Dimensional Data", TPAMI 2014

Paper for next week

Paper for next week will be announced over email later...