
© 2 0 1 5 P e r - E r i k F o r s s é n

Visual Object Recognition
Lecture 6: Tree Search and Hashing

Per-Erik Forssén, docent
Computer Vision Laboratory

Department of Electrical Engineering
Linköping University

© 2 0 1 5 P e r - E r i k F o r s s é n

Seminar 8 date
• All seminars have been shifted by one week

(again).

• Time for LE8 is now April 7 12.30-15.

© 2 0 1 5 P e r - E r i k F o r s s é n

Lecture 6: Tree Search and
Hashing

• High dimensional spaces  
Distances, Region edges

• Search Trees 
kD-Trees, Best Bin First (BBF), Ball Trees,K-means tree

• Hashing 
Geometric Hashing (GH), Locality Sensitive Hashing (LSH)

© 2 0 1 5 P e r - E r i k F o r s s é n

Motivation
• Finding the best match to a query descriptor q in

a database with N prototypes p1...pN costs O(N).

• For a database with thousands or millions of
descriptors this is expensive.

• A search tree can find several good matches
(near neighbours) in O(log N) time.

• A hash table can find a good match in O(1) time.

© 2 0 1 5 P e r - E r i k F o r s s é n

High dimensional spaces
• Distances in high dimensional spaces are higher

on average! 
 
 
 
 
 

• Small distances are unlikely in for high D.

Expected distance for two points in D-dim unit cube

© 2 0 1 5 P e r - E r i k F o r s s é n

High dimensional spaces
• Volume shrinks relative to area. 

Example: unit “ball” 
 
 
 
 
 

• This means that a decision region in has  
increasingly more edges as D increases.

© 2 0 1 5 P e r - E r i k F o r s s é n

High dimensional spaces
• E.g. box decision regions have 2 edges in R1, 

4 in R2, 6 in R3, 8 in R4,... 2D in RD  

 

 

 

 

 

 

 
 ...

R1

R2

© 2 0 1 5 P e r - E r i k F o r s s é n

Binary search
• Binary search to find scalar q in a list with N

entries p1...pN:  
 
 1. Sort values such that  
 2. Set l=1 h=N  
 3. while 
 4. 
 5. if m==l break  
 6. if q>p(m) l=m 
 7. else h=m

• Complexity O(log(N)), exact solution found.

© 2 0 1 5 P e r - E r i k F o r s s é n

kD-Trees
• Generalization of binary search to nD:

YesNo

q[k]>m11

q[k]>m22 q[k]>m33

p
1

p
2

p
3

p
4

p
N

© 2 0 1 5 P e r - E r i k F o r s s é n

kD-Trees
• Binary search only works in 1D,  

in higher dimensions the kD-tree gives a 
near neighbour.

• Tree construction algorithm:  
 
 1. Select dimension kn with largest variance  
 2. Split dataset in two along selected  
 dimension at median value, mn. 
 3. Repeat for each of the subsets.

© 2 0 1 5 P e r - E r i k F o r s s é n

kD-Trees
• Search for one neighbour is just one pass down

the tree, and thus computation time is proportional
to tree depth, d

• Tree depth

• To find more neighbours, the original algorithm
suggested a depth-first search with branch
pruning.

• If ecurr<q[kn]-mn then skip branch.

© 2 0 1 5 P e r - E r i k F o r s s é n

Best-bin-first
• Depth-first search works poorly in high

dimensional spaces, and thus [Beis&Lowe
CVPR’97] suggest a best-first search instead.

• Algorithm: 
 
 1. At each node, store the distance en=q[kn]-mn
in a priority queue. Always insert lowest value first.  
 2. Go down alternate branch of the first node in
the queue if en<ecurr

© 2 0 1 5 P e r - E r i k F o r s s é n

Best-bin-first

© 2 0 1 5 P e r - E r i k F o r s s é n

Multiple randomized  
kD-trees

• Multiple randomized kD-trees  
[Silpa-Anan& Hartley, CVPR’08]

• Create multiple kD-trees with small random
variations: 
In tree construction, select the D dimensions with
largest variance, draw one at random  
(e.g. D=5).

• Back-track in all trees in parallel, using best-first
search.

© 2 0 1 5 P e r - E r i k F o r s s é n

Ball Trees
• [Omohundro TR’89], Metric Tree [Uhlmann IPL’91]

• A radius nearest neighbour (RNN) method:  
find all neighbours within a distance  
from the query vector

• Each node in tree has a centre p, and a radius r 
 
 p is average of all leaves 
 r is maximum distance from p to a leaf

�

© 2 0 1 5 P e r - E r i k F o r s s é n

Ball Trees
• An optimal ball tree is constructed bottom up.

Very expensive. E.g. using agglomerative
clustering: 
 
 1. Set each sample to be one cluster  
 2. Merge the two most similar clusters  
 3. Repeat step 2 until no clusters are left.

• Agglomerative clustering generates a
dendrogram, or similarity tree. This can be pruned
using various heuristics to form the ball tree.

© 2 0 1 5 P e r - E r i k F o r s s é n

Ball Trees
• Example of a search:  
 
 
 
 
 

• At each node, the distances to circle centres are
computed, and compared to the radius.

Leibe&Mikolajczyk&Schiele, BMVC’06

© 2 0 1 5 P e r - E r i k F o r s s é n

Ball Trees
• Advantage: Good if RNN is needed. 

I.e. find all neighbours with d<dmax

• Disadvantages:

• Tree construction algorithm does not scale to
very large datasets

• A ball in is not such a useful region shape
if sample density varies in the feature space.

© 2 0 1 5 P e r - E r i k F o r s s é n

K-means Tree
• E.g. David Nistér and

Henrik Stewénius, Scalable
Recognition with a
Vocabulary Tree, CVPR06

• Hierarchical modification of
the visual words idea from
LE5

© 2 0 1 5 P e r - E r i k F o r s s é n

K-means Tree
• Building the tree:  
 
 1. Run K-means with e.g. K=10 on whole  
 dataset. 
 2. Partition dataset into K subsets using 
 Voronoi regions 
 3. Apply algorithm recursively on subsets.

• The tree gets branching factor K.

© 2 0 1 5 P e r - E r i k F o r s s é n

K-means Tree
• Using the tree: 
 
 1. Compare query vector to prototypes at 
 current level. 
 2. Go down best branch

© 2 0 1 5 P e r - E r i k F o r s s é n

K-means Tree
• Used to compute a TF-IDF bag-of-words vector

quickly.

• Much faster than non-hierarchical visual words
algorithm.

• As in the kD-tree, the terminal leaf node is a near
neighbour.

• The best-bin-first strategy makes the K-means
tree a strong contender for ANN (today’s paper).

© 2 0 1 5 P e r - E r i k F o r s s é n

Hash Tables
• An efficient way to perform lookup. 
 
 
 
 
 
 

• Each key is converted to an index using a hashing
function: index=H(key)

John Smith

Lisa Smith

Sam Doe

872

873

998

999

0

1
Lisa Smith +1-555-8976

John Smith +1-555-1234

Sam Doe +1-555-5030

Keys Indexes Key-value pairs
(records)

© 2 0 1 5 P e r - E r i k F o r s s é n

Hash Tables
• Lookup is O(1) instead of e.g. O(N) in a list, O(log

N) in a sorted list/tree etc.

• Collisions can happen. i.e. different keys get the
same index. Solved e.g. using chaining (linked
lists), or linear probing (insertion at next free slot).

• Linear probing typically wants a <80% filled table.

• Hashing has poor cache locality.

© 2 0 1 5 P e r - E r i k F o r s s é n

Geometric Hashing
• Introduced in Lamdan&Wolfson ICCV’88

© 2 0 1 5 P e r - E r i k F o r s s é n

Geometric Hashing
• Modern example: Used for matching frames

without descriptors by Chum & Matas, Geometric
Hashing with Local Affine Frames, CVPR’06

• Use pairs of affine frames. 
Express frame 2 in 
frame 1. 25 bins for angle 
16 for d1, 6 for d2 & d3

• 9*106 unique values for  
key to hash.

Frame 1 Frame 2

(0,1)

(1,0)

d1

d2

d3
1

2

3

© 2 0 1 5 P e r - E r i k F o r s s é n

Geometric Hashing
• Design of H(key) is not discussed further.

• GH suffers from the same basic problem as trees:
Neighbouring bins might contain the closest
match. A low dimensional space is needed.

• To further deal with the neighbour problem,
Chum&Matas construct 6 different tables (for 6
different frame constructions) and run them in
parallel.

© 2 0 1 5 P e r - E r i k F o r s s é n

Locality Sensitive Hashing
• LSH Introduces locality concept in general for

hashing. Introduced by Indyk&Mowani at
STC’98. See also MP-LSH paper [Lv et al.,
ICVLDB’07 2008] 

• Hash functions are designed to increase risk of
collision for similar data points=be locality
sensitive.

© 2 0 1 5 P e r - E r i k F o r s s é n

Locality Sensitive Hashing
• Common choice:

• Where 
are random quantized projections.

© 2 0 1 5 P e r - E r i k F o r s s é n

Locality Sensitive Hashing
• Common choice:

• Where 
are random quantized projections.

• LSH probing: 
Alt 1: Construct several hash tables (randomly),  
 and index them all using q.  
Alt 2: Construct several queries, by adding 
 random noise to q. 

© 2 0 1 5 P e r - E r i k F o r s s é n

Locality Sensitive Hashing
• LSH extensions:

• Multi-probe LSH [Lv et al., ICVLDB’07]  
Instead perturbs H(q)  
Neighbours to Hl(q) are Hl(q)-1 and Hl(q)+1  
Try promising bins in sequence.

• LSH Forest [Bawa et al ICWWW’05]  
Orders hash functions in a tree. Easier to
update as new data is added. Also enables  
self tuning where parameters are adjusted.

© 2 0 1 5 P e r - E r i k F o r s s é n

Summary
• Decision regions in nD are dominated by edges

• Approximate KNN and RNN are implemented
using either search trees or hashes.

• Trees are O(log(N)) and more space efficient
than hashes.

• Hashes can be O(1), but most adjustments
make them depend on N in practise.

© 2 0 1 5 P e r - E r i k F o r s s é n

Projects
• Course is 8hp: 

 5hp for lectures+articles+exam  
 3hp for project.

• Project part is 2 weeks of: 
 programming&research 
 writing a small report (a conference  
 submission will also do).

© 2 0 1 5 P e r - E r i k F o r s s é n

Project examples
1.Repeat the comparison of LSH and FLANN in

today’s paper on your own binary feature set (test
speedup vs. precision). (or with Forest LSH
instead of MP-LSH).

2.Use e.g. VLfeat (http://www.vlfeat.org) to
implement a bag-of-words recognition system.
Test how system parameters affect result.

3.Integrate SFOP detector with BRIEF descriptor
and compare results to e.g. SIFT.

http://www.vlfeat.org

© 2 0 1 5 P e r - E r i k F o r s s é n

Project examples
4.Implement and test a spatial verification for BoF

style recognition (e.g. using similarity, or affine
transform) of feature locations.

5.Learn a matching metric, and compare it to least
squares matching.

6.Compare Chi2, EMD and least-squares on a
problem of choice.

7.Your own suggestion.

© 2 0 1 5 P e r - E r i k F o r s s é n

Exam
Everyone should bring calendar for the next
seminar, so we can decide on a date for the
written exam.

Plan: Middle of or end of April.

© 2 0 1 5 P e r - E r i k F o r s s é n

Discussion
• Questions/comments today’s paper:  
 
M. Muja and D.G. Lowe, ”Scalable Nearest
Neighbour Algorithms for High Dimensional
Data”, TPAMI 2014

© 2 0 1 5 P e r - E r i k F o r s s é n

Paper for next week
• Paper for next week will be announced over

email later…

