Visual Object Recognition

Lecture 7: Voting and Learning

Per-Erik Forssén, docent Computer Vision Laboratory Department of Electrical Engineering Linköping University

Exam

Exam times:

April 16, 9-11 April 29, 13-15

Lecture 7: Voting and Learning

- Memory based learning
 Generalized Hough Transform, Meanshift Voting
- Learning
 SVM, Random Forests, Boosting, Deep Learning, Convolutional Neural Networks

Motivation

- Recognition by storing all observations in a memory and looking up good matches is called memory based learning.
- Efficient indexing techniques from LE6 are essential here.

Motivation

- Recognition by storing all observations in a memory and looking up good matches is called memory based learning.
- Efficient indexing techniques from LE6 are essential here.
- When storing everything is not feasible, other machine learning techniques are necessary.
- Learning also adapts the matching metric.

Memory based learning

 Memory based learning is viable in object pose recognition [see e.g. Viksten LiU thesis 2010]

Memory based learning

- Each training image generates a set of pairs (x,y)
 x=descriptor, y=(pose,id)
- At test time, descriptors are computed, and corresponding (pose,id) hypotheses are found in memory.

Finally, hypotheses are combined using clustering.

Memory based learning

- Common clustering techniques include:
 - Generalized Hough transform [Ballard, PR'80] generate constraints in parameter space, and paint them in an accumulator array/vote space.
 - Mean-shift clustering [Cheng PAMI'95] continuous domain voting

Generalised Hough Transform

• Non-iterative \Rightarrow constant time complexity.

Generalised Hough Transform

 Quantisation can be dealt with by increasing the number of cells, and blurring.

Kernel density estimate

• For a set of sample points $\{\mathbf{x}_n\}_1^N$ we define a continuous PDF-estimate as:

$$p(\mathbf{x}) = \frac{1}{Nh^d} \sum_{n=1}^{N} K\left(\frac{\mathbf{x}_n - \mathbf{x}}{h}\right)$$

Kernel density estimate

• For a set of sample points $\{\mathbf{x}_n\}_1^N$ we define a continuous PDF-estimate as:

$$p(\mathbf{x}) = \frac{1}{Nh^d} \sum_{n=1}^{N} K\left(\frac{\mathbf{x}_n - \mathbf{x}}{h}\right)$$

- K() is a kernel, e.g. $K(\mathbf{x}) = c \exp(-\mathbf{x}^T \mathbf{x}/2)$
- h is the kernel scale.

Mode seeking

- By modes of a PDF, we mean the local peaks of the kernel density estimate.
- These can be found by gradient ascent, starting in each sample.
- If we use the Epanechnikov kernel,

$$K_E(\mathbf{x}) = \begin{cases} c(1 - \mathbf{x}^T \mathbf{x}) & \text{if } \mathbf{x}^T \mathbf{x} \leq 1 \\ 0/\text{otherwise.} \end{cases}$$

a particularly simple gradient ascent is possible.

Mean-shift filtering

- 1. Start in each data point, $\mathbf{m}_n = \mathbf{x}_n$
- 2. Move to position of local average

$$\mathbf{m}_n \leftarrow \frac{1}{|\mathcal{N}(\mathbf{m}_n)|} \sum_{\mathbf{x}_n \in \mathcal{N}(\mathbf{m}_n)} \mathbf{x}_n$$

3. Repeat step 2 until convergence.

Mean-shift clustering

 After convergence of the mean-shift filter, all points within a certain distance (e.g. h) are said to constitute one cluster.

 Value of KDE is the confidence in the corresponding hypothesis on pose and object type.

- Idea by V.N. Vapnik in the 1960s. Many improvements since. The description here is based on [T. Hastie et al. "The Elements of Statistical Learning", 2008].
- Binary classification example: for a feature vector x, we seek a function:

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{w} + w_0$$

• if f(x)>0 class 1, class 2 otherwise

• The optimization problem: $\max_{\mathbf{w}, w_0, ||\mathbf{w}||=1} M$

subject to
$$y_i(\mathbf{x}_i^T\mathbf{w} + w_0) \ge M, i \in [1, N]$$

y_i is output class membership {-1,1}

For the classification function:

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{w} + w_0$$

Solution has the form:

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

• where only α_i at the margin boundary are non-zero. The vectors \mathbf{x}_i at the margin are called **support vectors**, as they define \mathbf{w} .

For the classification function:

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{w} + w_0$$

Solution has the form:

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

- where only α_i at the margin boundary are non-zero. The vectors \mathbf{x}_i at the margin are called **support vectors**, as they define \mathbf{w} .
- Additional slack variables for all data points are needed to handle cases where all samples cannot be classified correctly.

Instead of the linear version:

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{w} + w_0$$

A kernel version is typically used:

$$f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i y_i \langle h(\mathbf{x}), h(\mathbf{x}_i) \rangle + w_0$$

- h(x) is some mapping into a high dimensional space.
- Scalar product can be replaced by a kernel function.

Instead of the linear version:

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{w} + w_0$$

A kernel version is typically used:

$$f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i) + w_0$$

 This leads to non-linear decision regions, defined by the support vectors.

- SVMs are usually used in a one-vs-all fashion, i.e. one SVM is trained per class.
- Many variants and extensions, e.g. for regression, and so called latent SVMs as used by Felzenzwalb et al. in their DPM system [CVPR08] See lecture 5.

Classification and Regression Trees

CART are trees with very simple tests in each node

- Tests are data-adaptive. The outcome of previous tests determine which new test to make.
- Leaf nodes store responses instead of samples. E.g. class membership probabilities, or a regression model.

Classification and Regression Trees

CART are trees with very simple tests in each node

- Given a tree, the outputs at each leaf node are computed from training samples that end up in this node.
- E.g. a class membership histogram, or a linear regression function fitted from data.

- Invented by Leo Breiman. [L.Breiman ML'2001].
 Good Tutorial [Criminisi et al. FTCGV'2011]
- Conceptually similar to the randomized kD-trees in LE6, but actually invented earlier.

 Ensemble of CARTs. All tree outputs are combined to one statement by e.g. histogram averaging.

• It is well known that fusion of several classifier outputs can improve performance.

- Especially if the classifiers make errors that are uncorrelated.
- Random forests exploit this by creating many relatively poor classifiers, that have uncorrelated errors.

- Uncorrelated classifier errors in RF are obtained in two ways:
 - **Bagging**. Each tree gets its own training set by drawing random training samples (with replacement).
 - Randomized node optimization. Just like in multiple randomized kD-trees (LE6).

- Randomized node optimization.
 - This is typically involves drawing random split functions and evaluating these.
 - Evaluation is done with respect to the output class histogram entropy H(v).

$$H(\mathbf{v}) = \sum_{k} v_k \log v_k$$

 Evaluation is done with respect to the output class histogram entropy H(v).

$$H(\mathbf{v}) = -\sum_{k} v_k \log v_k$$

H([0.25,0.25,0.25,0.25])=1.39 H([0.10,0.10,0.70,0.10])=0.94 H([0.00,0.00,1.00,0.00])=0.00

 Evaluation is done with respect to the output class histogram entropy H(v).

$$H(\mathbf{v}) = -\sum_{k} v_k \log v_k$$

H([0.25,0.25,0.25,0.25])=1.39 H([0.10,0.10,0.70,0.10])=0.94 H([0.00,0.00,1.00,0.00])=0.00

Information gain criterion

$$I = H(\mathcal{S}) - \frac{|\mathcal{S}_L|}{|\mathcal{S}|} H(\mathcal{S}_L) - \frac{|\mathcal{S}_R|}{|\mathcal{S}|} H(\mathcal{S}_R)$$

- Application example: Pose from Kinect depth maps [Shotton et al. CVPR'11, PAMI'13]
- 31 classes for body parts
- RF applied in each pixel
- Parameters:
 depth 20, 3 trees
- Journal version also tests direct regression to 16 joint positions.

Boosting

- General principle for ensemble optimization
- weak learners are optimized in sequence
- before adding another weak learner, the samples are tested on the current ensemble, and misclassified samples are given higher weight.
- The ensemble now exhibits complementarity, not just uncorrelated errors.

Boosting

- General principle for ensemble optimization
- weak learners are optimized in sequence
- before adding another weak learner, the samples are tested on the current ensemble, and misclassified samples are given higher weight.
- The ensemble now exhibits complementarity, not just uncorrelated errors.
- Often the weak learner is a linear classifier, but it could also be a classification tree. Such sequential optimisation of trees is reported to have marginally better performance than random forests [K.P. Murphy "Machine Learning", 2012]

Boosting

 Application example: Face detection [Viola & Jones ICCV'01]

• Here each weak learner finepics F40fd is based on a single Haar-filter response.

Deep learning

- This is essentially the Perceptron from the 70s with a bag of tricks added:
 - Better non-linearity
 - Convolutional layers with max-pooling
 - Drop-out

Deep learning

- Multi-Layer Perceptron (MLP)
- Each node contains
 a weighted sum of
 inputs x_I, and an
 activation function f()

$$y_k = f\left(\sum_{l=0}^L x_l w_l\right)$$

- Multi-Layer Perceptron (MLP)
- Originated in the 70s
- Training by error back-propagation using the derivative chain rule [thesis by Paul Werbos 1974]
 [D.E. Rumelhart et al. Nature 1986]
- Many details have changed since to 70s
- Today more training data is available and GPUs can be used for training.

- The activation function f() must be non-linear otherwise a multi-layer network can be replaced by a single layer one.
- "classic" logistic function

$$y=1/(1+exp(-x))$$

 The activation function f() must be non-linear otherwise a multi-layer network can be replaced by a single layer one.

 "classic" logistic function y=tanh(x)

 The activation function f() must be non-linear otherwise a multi-layer network can be replaced by a single layer one.

 "classic" logistic function y=tanh(x)

y=max(0,x)

• ReLU

(today's paper)

 $y=1/(1+\exp(-x))$

In deep learning there are three distinct types of

layers:

1. **Convolutional** First few layers

2. **Fully-connected**Near output

3. Output

- Convolutional layers
 - Weight sharing: A set of linear filter kernels that are shifted spatially
 - Non-linearity: activation function+normalization.
 - The output map is then reduced by max-pooling
 - Higher layers have more filter types, but smaller spatial resolution (c.f. "Standard model" in lecture 1)

Visual Object Recognition

- The "Standard Model", Riesenhuber&Poggio, Nature Neuroscience vol.2 no.11, 1999
- Alternating template matching and local max operations.
- Decreasing spatial resolution, increasing number of feature types
- Perception only, no motor functions (head&eye movements)

Mutch&Lowe CVPR'06

- Max-pooling
 - Max response in 3x3 neighbourhood, stride 2

• Improve performance in convolutional layers.

- Max-pooling
 - Max response in 3x3 neighbourhood, stride 2

Overlapping pooling as in today's paper.

- Fully connected layers
 - Layers before output have no spatial shifts
 - During training a technique called dropout is applied here.

Drop-out

- During training, randomly set 50% of nodes to zero.
- At test time scale responses by 0.5 to compensate.
- Usually applied at the fully-connected layers to make responses more independent of each other.

- Output layer
 - For classification the output layer has a softmax logistic normalization

$$\sigma_k = \frac{e^{y_k}}{\sum_{n=1}^K e^{y_n}}$$

 Gives values in range [0,1] that can be interpreted as probabilities.

- Output layer
 - Another option is to train the network to output the input images again
 - Networks with such an output layer are called autoencoder networks
 - last hidden layer can now be used as an image feature (see also DeCAF, lecture 3)

- Training
 - Basic principle is still back-propagation of errors.
 - Random initialization of weights
 - Stochastic (block) estimation of error gradients
 - Many passes (epochs) through the data.
 - Bag of tricks. See todays paper.

Discussion

Questions/comments on today's paper:

A. Krizhevsky, I. Sutskever, G.E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks", **NIPS 2012**

Paper for next week

Paper for next week will be announced over email later...