Visual Object Recognition

Lecture 8: Performance Evaluation

Per-Erik Forssén, docent Computer Vision Laboratory Department of Electrical Engineering Linköping University

Lecture 8: Performance Evaluation

- Detector: Repeatability Tests
- Descriptor matching: Inlier frequency curve
- Classifier: ROC and Precision-Recall curves
- Discussion of exam and evaluation

- Used for evaluating feature detectors.
 E.g. Mikolajczyk et al.
 IJCV'06.
- Known geometric transformation between two views can be used to check if the same region is detected in two images.

Example: Homography

A point **x** should be transformed to a point **x**' according to:

$$\mathbf{x}' = \mathbf{H}\mathbf{x}$$

In reality we

detect regions: $\mathbf{x}^T \mathbf{C} \mathbf{x} \leq 0$

$$\mathbf{C} = \frac{1}{4} \begin{bmatrix} \mathbf{I}^{-1} & -\mathbf{I}^{-1}\mathbf{m} \\ -\mathbf{m}^{T}\mathbf{I}^{-1} & \mathbf{m}^{T}\mathbf{I}^{-1}\mathbf{m} - 4 \end{bmatrix}$$

Example: Homography

An elliptic region **C**(**m**,**I**) should be transformed to a region **C**'(**m**',**I**') according to:

$$\mathbf{C}' = \mathbf{H}^{-T} \mathbf{C} \mathbf{H}^{-1}$$

Can be derived from perimeter equation: $\mathbf{x}^T \mathbf{C} \mathbf{x} = 0$ (transform \mathbf{x} to \mathbf{x} ' and identify \mathbf{C} ')

1. Compute overlap error:

$$\epsilon = 1 - \frac{\operatorname{area}(A \cap B)}{\operatorname{area}(A \cup B)}$$

- 2. Assign 1-to-1 correspondences from image 1 to image 2. (Combinatorial problem if nested regions are detected)
- 3. repeatability = correspondences (with $\epsilon \leq {\tt thr}$) divided by #features (in mutually visible region)

 Using generalisation of overlap error to 3D correspondences (Forssén&Lowe ICCV'07)

Using epipolar geometry, and specifically epipolar tangents.

Epipolar tangents

Measure overlap of tangents and projected epipolar tangents.

$$\epsilon = 1 - \frac{\max(0, \min(x_h, p_h) - \max(x_l, p_l))}{\max(x_h, p_h) - \min(x_l, p_l)}$$

 Repeatability measures probability that a feature will be detected again.

P(detection|visibility)

 Repeatability is not useful for non-rigid objects/ categories. (As a geometric constraint is used.)

Correspondence Count

- A complementary statistic is to simply count the number of corresponding regions (skip division by number of detected features).
- Better for object recognition:
 If each feature match casts a vote, the probability of a cluster forming by chance is low, so outliers can be tolerated.
- Also: All hypothesis generation(HG)+verification schemes. HG costs only time.

Inlier Frequency Curve

 Descriptor matching generates ordered tentative correspondences. When ground-truth is known, these can be evaluated with an inlier frequency curve, Chum&Matas, CVPR06.

Good for RANSAC, and e.g. PROSAC (which uses the ranking).

 Used for evaluating binary classifiers across a change of the discriminant.

- Used for evaluating binary classifiers across a change of the discriminant.
- The optimal discriminant direction is often application independent, but the actual threshold is not.
- With ROC and PR curves, comparison can be done without committing to a specific discriminant.

- Instead of a single performance measure we get a curve.
- Useful if criterion changes over time. E.g.
 - 1. Few false alarms might be most important.
 - 2. It might be very important not to miss a positive.
- To adapt, read curve in a different place.

ROC curve

 Move discriminant, and plot True Positive Rate(TPR) against False Positive Rate(FPR)

$$TPR = \frac{TP}{TP + FN}$$
 $FPR = \frac{FP}{FP + TN}$

Invariant to skewed datasets (bad).
 Since normalisation is done with actual number of positives and negatives.

ROC from histograms

 ROC curves can used for evaluating matching performance as well. By using error histograms for inlier&outlier sets.

Discriminant moving from left to right.

$$\mathrm{TPR}(\epsilon) = \int_0^\epsilon p(\epsilon'|\mathrm{inlier})d\epsilon' \ \mathrm{FPR}(\epsilon) = \int_0^\epsilon p(\epsilon'|\mathrm{outlier})d\epsilon'$$

Precision-Recall curve

 Move discriminant, and plot Precision against Recall

$$\texttt{Precision} = \frac{\texttt{TP}}{\texttt{TP} + \texttt{FP}} \qquad \texttt{Recall} = \texttt{TPR} = \frac{\texttt{TP}}{\texttt{TP} + \texttt{FN}}$$

Looks only at correctly reported positives.
 Better than ROC if positives are rare.

Precision-Recall curve

- TPR and FPR (used in ROC) are monotonic
 ⇒Linear interpolation between points on an ROC curve is reasonable.
- Conversion between ROC and PR is possible as |gt=0|=TP+FN and |gt=1|=FP+TN are constant and known.

	gt=0	gt=1
out=0	TP	FP
out=1	FN	TN

 Solve confusion table for each point, and compute the corresponding point on the other curve. Davis & Goadrich, "The relationship between Precision-Recall and ROC curves", ICML06

Precision-Recall curve

- This suggests that the proper way to interpolate a PR curve is to linearly interpolate in ROC space, and then transfer the result.
- A linear interpolation of PR may be impossible to attain.

ROC vs PR curves

• Curves show different positive/negative sample ratios.

For classifier output

 Recognition algorithms often output class probability estimates. E.g. for four classes:

 For each class we can compute a PR curve by assigning to class k if v_k>t, and letting t go from 0 to 1.

F-scores

 Precision and recall combined into a single measure (using the harmonic mean)

$$F_1 = \frac{2}{1/P + 1/R} = \frac{2PR}{R + P}$$

F-scores

 Precision and recall combined into a single measure (using the harmonic mean)

$$F_1 = \frac{2}{1/P + 1/R} = \frac{2PR}{R + P}$$

Weighted F-scores

$$F_k = (1 + k^2) \frac{PR}{R + k^2 P}$$

All computed at a specific detection threshold

Summarization

- If a quality measure is to be used in optimization, a single measure is better than a curve.
- A common way to summarize ROC (and PR) is to look at area under the curve (AUC). Also called average precision for a PR curve.
- Another option for ROC is the point of equal error rate (EER), i.e. where FPR=1-TPR
- AUC is in general better than EER as AUC considers the whole curve.

Summary

- For detection and matching, both inlier frequency and total number matters.
- Use ROC and PR curves in classification to avoid committing to a threshold.
- PR curves are better for skewed datasets
- For optimisation, area under a curve is a useful summary

Exam

- Written exam format:
 - In total 16 questions
 - Example:

Explain when a Precision-Recall should be used instead of a ROC curve, and why.

- Questions will be based on:
 - 1. The slides from all eight lectures
 - 2. The seven articles

Exam

• Times for the written exam:

April 16, 9-11 >2people

April 29, 13-15 >6people

Discussion

Questions/comments on today's paper:

Russakovsky and Deng et al., "ImageNet Large Scale Visual Recognition Challenge", **ArXiV15**