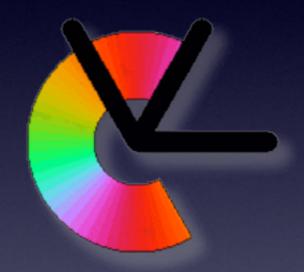
# Visual Object Recognition

Lecture 8: Performance Evaluation

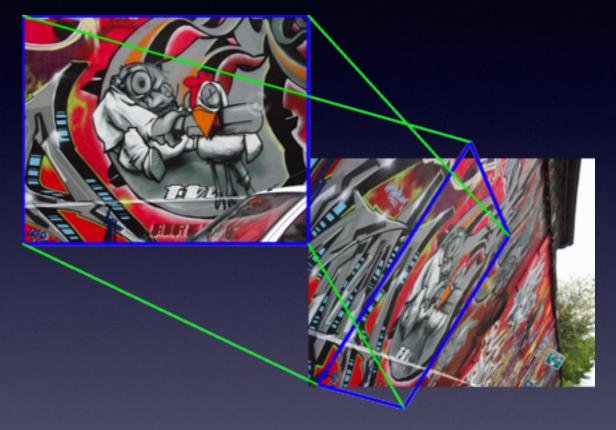


Per-Erik Forssén, docent Computer Vision Laboratory Department of Electrical Engineering Linköping University

# Lecture 8: Performance Evaluation

- Detector: Repeatability Tests
- Descriptor matching: Inlier frequency curve
- Classifier: ROC and Precision-Recall curves
- Discussion of exam and evaluation

- Used for evaluating feature detectors.
   E.g. Mikolajczyk et al.
   IJCV'06.
- Known geometric transformation between two views can be used to check if the same region is detected in two images.



Example: Homography

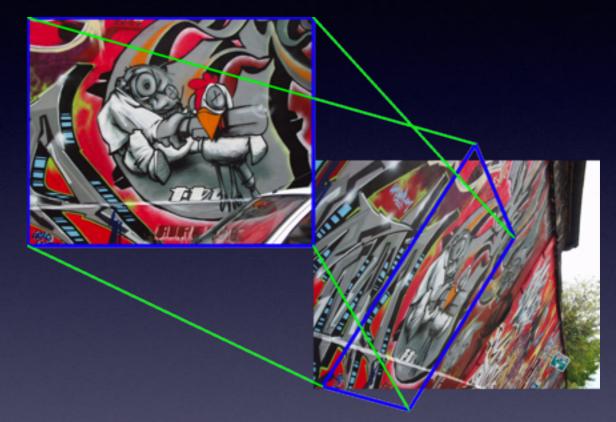
A point **x** should be transformed to a point **x**' according to:

$$\mathbf{x}' = \mathbf{H}\mathbf{x}$$

In reality we

detect regions:  $\mathbf{x}^T \mathbf{C} \mathbf{x} \leq 0$ 

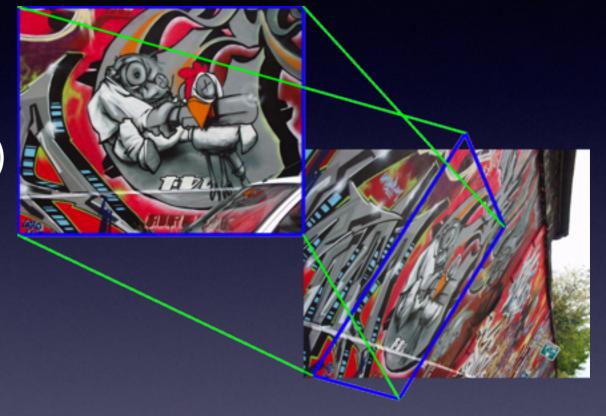
$$\mathbf{C} = \frac{1}{4} \begin{bmatrix} \mathbf{I}^{-1} & -\mathbf{I}^{-1}\mathbf{m} \\ -\mathbf{m}^{T}\mathbf{I}^{-1} & \mathbf{m}^{T}\mathbf{I}^{-1}\mathbf{m} - 4 \end{bmatrix}$$



Example: Homography

An elliptic region **C**(**m**,**I**) should be transformed to a region **C**'(**m**',**I**') according to:

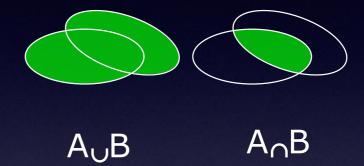
$$\mathbf{C}' = \mathbf{H}^{-T} \mathbf{C} \mathbf{H}^{-1}$$



Can be derived from perimeter equation:  $\mathbf{x}^T \mathbf{C} \mathbf{x} = 0$  (transform  $\mathbf{x}$  to  $\mathbf{x}$ ' and identify  $\mathbf{C}$ ')

1. Compute overlap error:

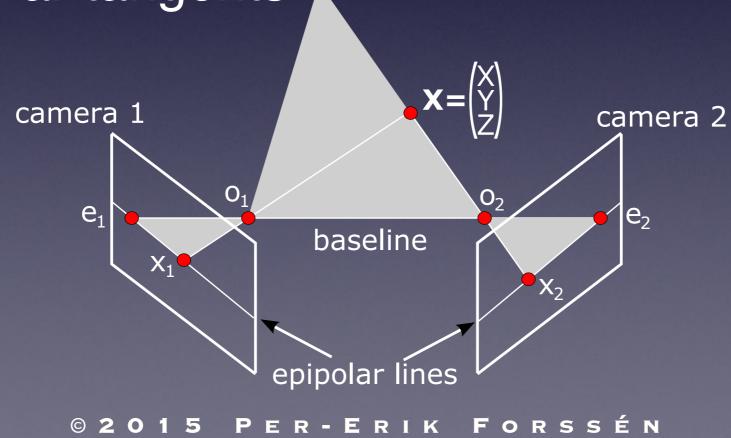
$$\epsilon = 1 - \frac{\operatorname{area}(A \cap B)}{\operatorname{area}(A \cup B)}$$



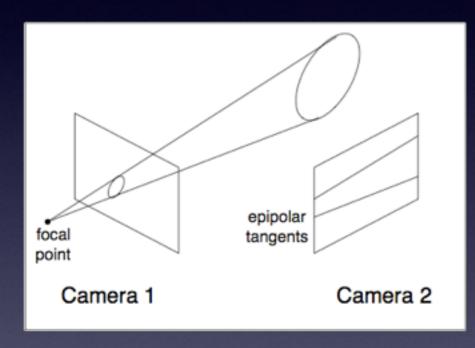
- 2. Assign 1-to-1 correspondences from image 1 to image 2. (Combinatorial problem if nested regions are detected)
- 3. repeatability = correspondences (with  $\epsilon \leq {\tt thr}$ ) divided by #features (in mutually visible region)

 Using generalisation of overlap error to 3D correspondences (Forssén&Lowe ICCV'07)

Using epipolar geometry, and specifically epipolar tangents.



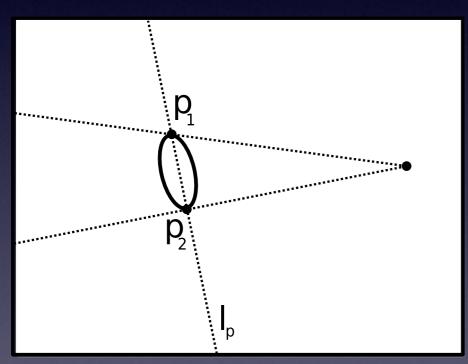
Epipolar tangents

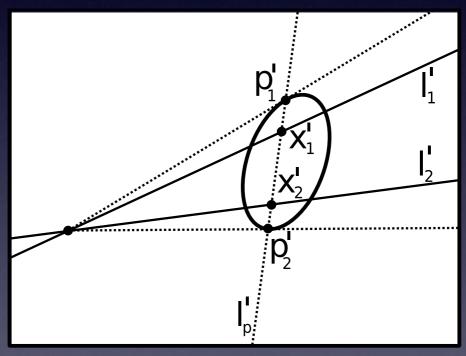






Measure overlap of tangents and projected epipolar tangents.





$$\epsilon = 1 - \frac{\max(0, \min(x_h, p_h) - \max(x_l, p_l))}{\max(x_h, p_h) - \min(x_l, p_l)}$$

 Repeatability measures probability that a feature will be detected again.

P(detection|visibility)

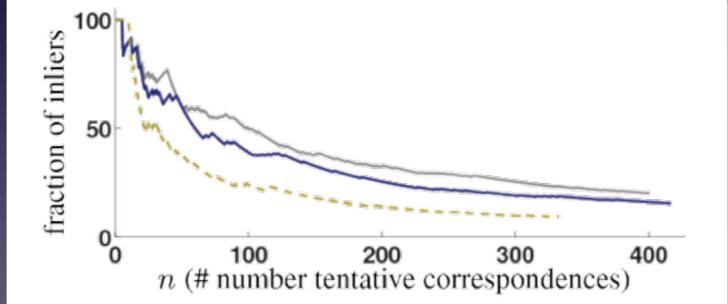
 Repeatability is not useful for non-rigid objects/ categories. (As a geometric constraint is used.)

## Correspondence Count

- A complementary statistic is to simply count the number of corresponding regions (skip division by number of detected features).
- Better for object recognition:
   If each feature match casts a vote, the probability of a cluster forming by chance is low, so outliers can be tolerated.
- Also: All hypothesis generation(HG)+verification schemes. HG costs only time.

## Inlier Frequency Curve

 Descriptor matching generates ordered tentative correspondences. When ground-truth is known, these can be evaluated with an inlier frequency curve, Chum&Matas, CVPR06.



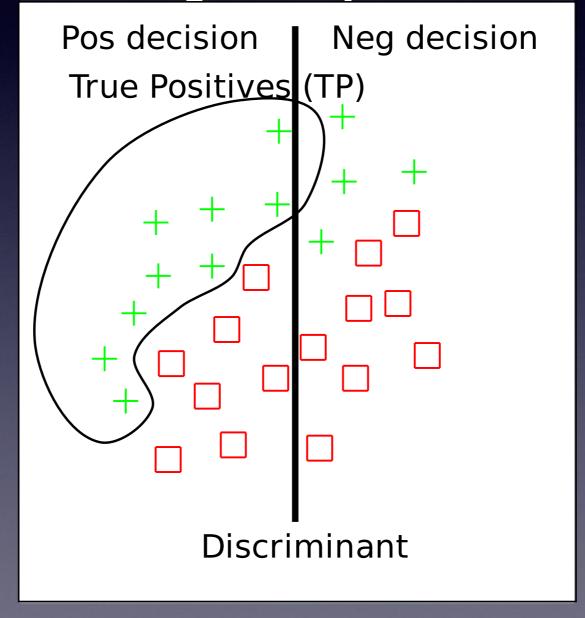
Good for RANSAC, and e.g. PROSAC (which uses the ranking).

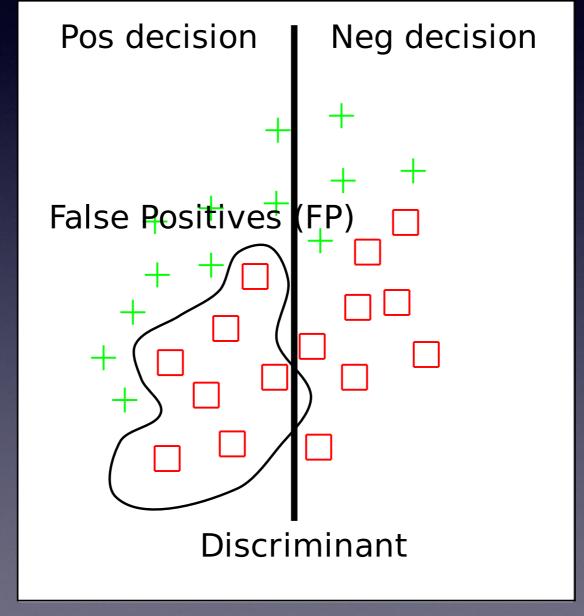
 Used for evaluating binary classifiers across a change of the discriminant.

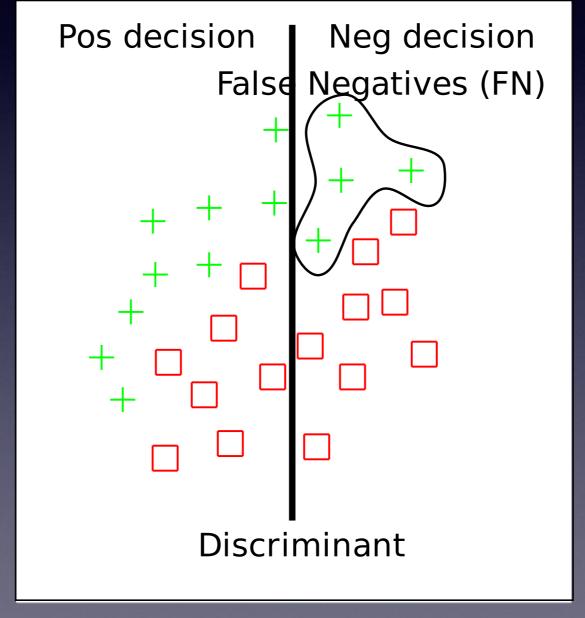


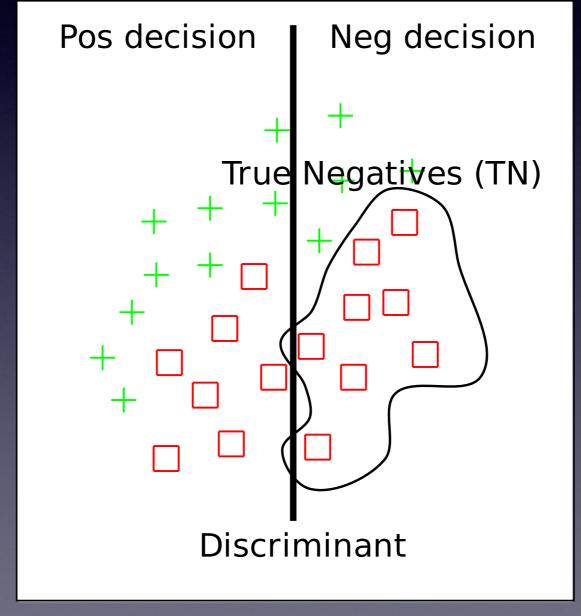
- Used for evaluating binary classifiers across a change of the discriminant.
- The optimal discriminant direction is often application independent, but the actual threshold is not.
- With ROC and PR curves, comparison can be done without committing to a specific discriminant.

- Instead of a single performance measure we get a curve.
- Useful if criterion changes over time. E.g.
  - 1. Few false alarms might be most important.
  - 2. It might be very important not to miss a positive.
- To adapt, read curve in a different place.









#### ROC curve

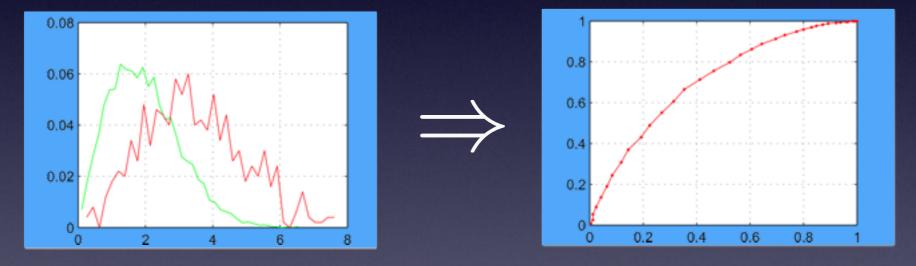
 Move discriminant, and plot True Positive Rate(TPR) against False Positive Rate(FPR)

$$TPR = \frac{TP}{TP + FN}$$
  $FPR = \frac{FP}{FP + TN}$ 

Invariant to skewed datasets (bad).
 Since normalisation is done with actual number of positives and negatives.

## ROC from histograms

 ROC curves can used for evaluating matching performance as well. By using error histograms for inlier&outlier sets.



Discriminant moving from left to right.

$$\mathrm{TPR}(\epsilon) = \int_0^\epsilon p(\epsilon'|\mathrm{inlier})d\epsilon' \ \mathrm{FPR}(\epsilon) = \int_0^\epsilon p(\epsilon'|\mathrm{outlier})d\epsilon'$$

#### Precision-Recall curve

 Move discriminant, and plot Precision against Recall

$$\texttt{Precision} = \frac{\texttt{TP}}{\texttt{TP} + \texttt{FP}} \qquad \texttt{Recall} = \texttt{TPR} = \frac{\texttt{TP}}{\texttt{TP} + \texttt{FN}}$$

Looks only at correctly reported positives.
 Better than ROC if positives are rare.

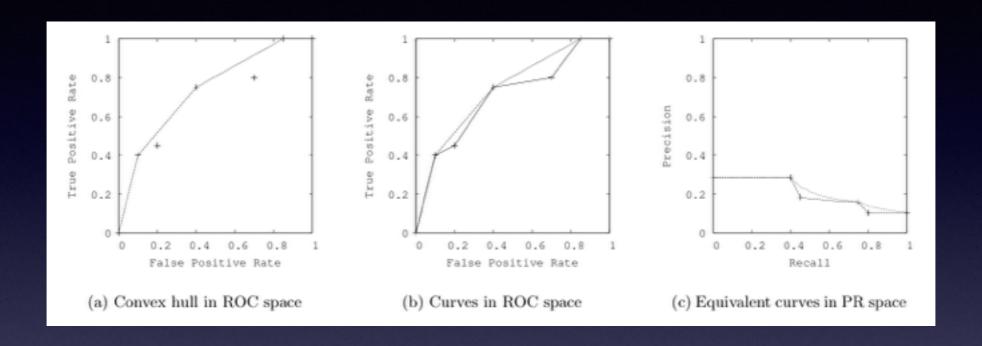
#### Precision-Recall curve

- TPR and FPR (used in ROC) are monotonic
   ⇒Linear interpolation between points on an ROC curve is reasonable.
- Conversion between ROC and PR is possible as |gt=0|=TP+FN and |gt=1|=FP+TN are constant and known.

|       | gt=0 | gt=1 |
|-------|------|------|
| out=0 | TP   | FP   |
| out=1 | FN   | TN   |

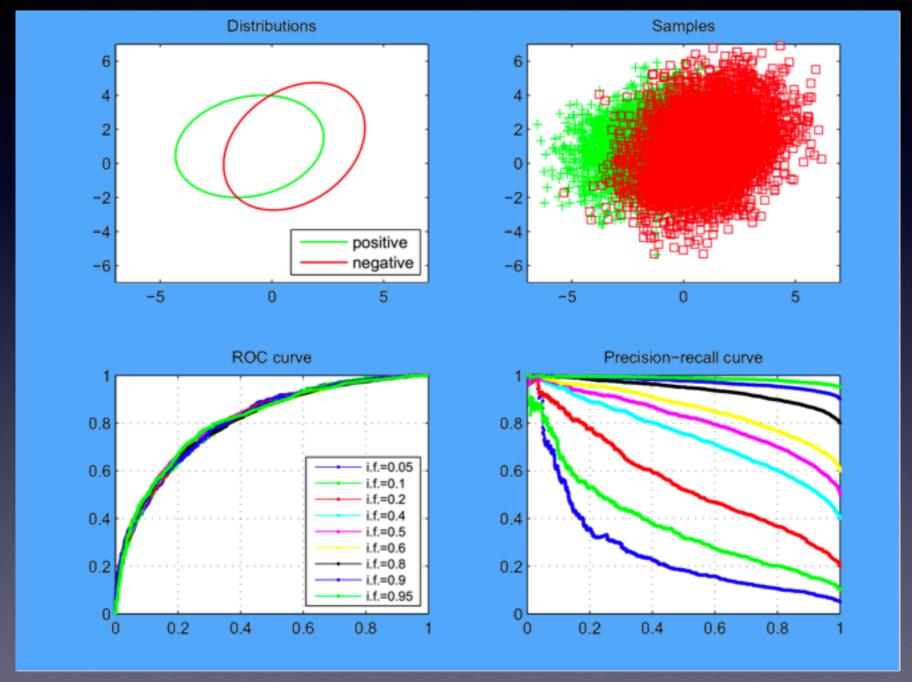
 Solve confusion table for each point, and compute the corresponding point on the other curve. Davis & Goadrich, "The relationship between Precision-Recall and ROC curves", ICML06

#### Precision-Recall curve



- This suggests that the proper way to interpolate a PR curve is to linearly interpolate in ROC space, and then transfer the result.
- A linear interpolation of PR may be impossible to attain.

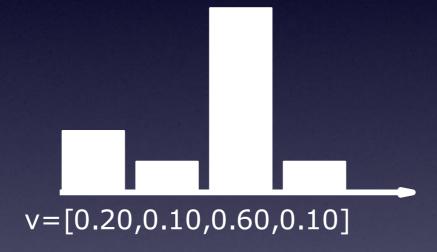
### ROC vs PR curves



• Curves show different positive/negative sample ratios.

## For classifier output

 Recognition algorithms often output class probability estimates. E.g. for four classes:



 For each class we can compute a PR curve by assigning to class k if v<sub>k</sub>>t, and letting t go from 0 to 1.

#### F-scores

 Precision and recall combined into a single measure (using the harmonic mean)

$$F_1 = \frac{2}{1/P + 1/R} = \frac{2PR}{R + P}$$

#### F-scores

 Precision and recall combined into a single measure (using the harmonic mean)

$$F_1 = \frac{2}{1/P + 1/R} = \frac{2PR}{R + P}$$

Weighted F-scores

$$F_k = (1 + k^2) \frac{PR}{R + k^2 P}$$

All computed at a specific detection threshold

#### Summarization

- If a quality measure is to be used in optimization, a single measure is better than a curve.
- A common way to summarize ROC (and PR) is to look at area under the curve (AUC). Also called average precision for a PR curve.
- Another option for ROC is the point of equal error rate (EER), i.e. where FPR=1-TPR
- AUC is in general better than EER as AUC considers the whole curve.

## Summary

- For detection and matching, both inlier frequency and total number matters.
- Use ROC and PR curves in classification to avoid committing to a threshold.
- PR curves are better for skewed datasets
- For optimisation, area under a curve is a useful summary

#### Exam

- Written exam format:
  - In total 16 questions
  - Example:

Explain when a Precision-Recall should be used instead of a ROC curve, and why.

- Questions will be based on:
  - 1. The slides from all eight lectures
  - 2. The seven articles

#### Exam

• Times for the written exam:

April 16, 9-11 >2people

April 29, 13-15 >6people

## Discussion

Questions/comments on today's paper:

Russakovsky and Deng et al., "ImageNet Large Scale Visual Recognition Challenge", **ArXiV15**