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• The Spectral Clustering part is to a large
extent the same as the 2012 course

• Then planned and presented by
– Vasileios Zografos & Klas Nordberg 
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What this course is

• Basic introduction into the core ideas of
spectral clustering and channel
representations

• Sufficient to get a basic understanding of
how the methods work

• Application mainly to computer vision
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Course contents
• 4 lectures

– Lecture 1: Spectral clustering: Introduction and confusion, KN

– Lecture 2: Spectral clustering:  From confusion to clarity, KN

– Lecture 3: Channel Representations: encoding, MF

– Lecture 4: Channel Representations: decoding, MF

• 2 courseworks (seminars)
– Article seminar on spectral clustering
– Article seminar on channel representations
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Overview of clustering
• What is clustering ?

– Given some data and a notion of similarity
– Partition the input data into maximally

homogeneous groups (i.e. clusters)
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Overview of clustering

• Applications
– Image processing and computer vision
– Computational biology
– Data mining and information retrieval
– Statistical data analysis
– Machine learning and pattern recognition
– …
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Overview of clustering

• What is a cluster?
– Homogeneous group
– No universally accepted definition of homogeneity

• In general a cluster should satisfy two
criteria:
– Internal: All data inside a cluster should be highly

similar (intra-cluster)
– External: Data between clusters should be highly

dissimilar (inter-cluster)
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A clustering of clustering

Graph theoretic
• Graph cuts
• Spectral clustering
• …

Distribution based
• E-M algorithm
• KDE clustering
• …

Centroid based
• K-Means
• …

Mode seeking
• Mean / Median shift
• Medoid shift
• …

Connectivity 
based

• Hierarchical clustering
• …
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K-means
• Basic clustering algorithm. Given a set of observations �1, … ��, partition 

them into � clusters with means �� s.t. the within cluster sum of squares 
(distortion) is minimised

argmin� � �� � �� 2
��∈��

�

���
• NP-hard. Iterative algorithm available

1. Initialise � clusters
2. Calculate cluster means ��
3. Calculate distances of each point �� to each cluster mean ��
4. Assign point to nearest cluster
5. Goto 2 until convergence

• Number of clusters �	need to be known. Gives convex clusters
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What is spectral clustering

• In relation to spectral clustering
– Similarity is quantified by affinity

– Affinity A between two points x, y:
• In general: 0 ≤ A ≤ 1 and

A(x, y) =

{
≈ 1, when x and y are similar,

≈ 0, when x and y are dissimilar.
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What is spectral clustering
• Clustering algorithm:

– Treats clustering as a graph partitioning 
problem without making specific 
assumptions on the form of the clusters.

– Cluster points using eigensystem of 
matrices derived from the data.

– Data projected to a low-dimensional 
space that are separated and can be easily 
clustered.
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Pros and cons of spectral clustering

• Advantages:
– Does not make strong assumptions on the 

statistics or shape of the clusters
– Easy to implement.
– Good clustering results.
– Reasonably fast for sparse data sets of several 

thousand elements.

• Disadvantages:
– May be sensitive to choice of parameters
– Computationaly expensive for large datasets
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Graph partitioning
Graph cut point of view

• Given data points �1, … ��, pairwise affinities 
A�� � ����, �� 

• Build similarity graph

• Clustering = find a cut through the graph
– Define a cost function, a function over different partitions (cuts)
– Solve it = find cut of minimal cost
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Spectral clustering
Low -dimensional embedding point of view

• Given data points �1, … ��, pairwise affinities A�� � ����, �� 
• Find a low-dimensional embedding (not same as PCA!)
• Project data points to new space

• Cluster using favourite clustering algorithm (e.g. k-means)

Data space

Low-dimensional 
space
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Graph cut vs spectral clustering

• The two points of views are related

• The low-dimensional space is determined by the data

• Spectral clustering makes use of the spectrum of the 
graph for dimensionality reduction
– Embed data points in the subpace of the “largest” eigenvectors

• Projection and clustering equates to graph partition by 
different min-cut criteria
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Graphs

• Other datasets can be transformed simply into
similarity (or affinity) graphs

– Affinity can encode local-structure in the data
– Global structure induced by a distance function is often

misleading

• Graphs are an important component of spectral clustering
• Many datasets have natural graph structure

– Web pages and links
– Protein structures
– Citation graphs
– …

• Suited for representing data based on pairwise relationships (e.g. 
affinities, local distances)

• A positive symmetric matrix can be represented as a graph
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Affinity and distance

• An affinity score between two objects ��, �� is “high” if the 
objects are “very similar”

– E.g. the Gaussian kernel       ! �, � � exp � ��%��
&'( 	

• A distance score between two objects �, )	is “small” if the 
objects are “close” to each other
– E.g. the Euclidean distance    * �, � � �� � ��

• Distances and affinities have an inverse relationship high 
affinity ↔ small distance

• A distance can be turned into an affinity by using an appropriate 
kernel 

• Many choices of kernels. One of the most important choices in 
spectral clustering

σ is a parameter!
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Graph basics

• Definition: A graph G is a triple consisting of a vertex set V(G), 
an edge set E(G) and a relation that associates with each edge 
two vertices.

Directed graph

0,2

2,1

2,3

2,2

2,1
2,1

2,2

1,1

2,1

Undirected graph

2

5

5

4

4

4
4

5 4

Weighted undirected graph Complete graph

In spectral
clustering we
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undirected graphs,

weighted or not
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Graph basics

The Adjacency matrix , of an undirected graph
• N × N symmetric binary matrix

• rows and columns represent the vertices and entries represent the 
edges of the graph.

• Simple graph = zero diagonal

- ., / � 0 if ., / are not connected
- ., / � 1 if ., / are connected

9

7

6

8

2

5
4

1 3

0 1 0 0 0 1 1 0 1

1 0 1 1 1 0 0 0 0

0 1 0 1 1 0 0 0 0

0 1 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0 0

1 0 1 0 0 0 1 1 0

1 0 0 0 0 1 0 1 1

0 0 0 0 0 1 1 0 0

1 0 0 0 0 0 1 0 0
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Graph basics

The Affinity matrix � of an undirected graph

• Weighted adjacency matrix
• Each edge is weighted by pairwise vertex affinity

2 ., / � 0 if ., / are not connected
2 ., / � 3�., / 	 if ., / are connected

• By adjusting the kernel parameter we can set the affinity of 
dissimilar vertices to zero and essentially disconnect them

• A is similar to W, but allows “non-binary” relations

s(i,j) is the 
previous
kernel function
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Graph basics

The Degree matrix 4 of an undirected graph
• N × N diagonal matrix that contains information about the degree of 

each vertex
• Degree 5�6. of a vertex 6. of a graph is the number of edges incident 

to the vertex. Loops are counted twice

7 ., / � 0 if 	.	 8 	/
7 ., / � 5�6. if . � /			 ⇒ 		: � diagdiagdiagdiag�51, … , 5< 

4 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0

0 0 4 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0

0 0 0 0 3 0 0 0 0

0 0 0 0 0 4 0 0 0

0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 0 2

9

7

6

8

2

5
4

1 3
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Graph basics
Laplacian matrix of simple undirected graph

• > � 4 � ,	(Degree – Adjacency), or
• > � 4 � �		(Degree – Affinity)
• > is symmetric and positive semi-definite
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Vertex labeling
• All these matrices are symmetric

– ON-basis of eigenvectors in RN exists

• All these matrices depend on the labeling of the 
graph vertices

• Re-labeling of the vertices = permutation of the 
matrix rows and columns
– Same permutation of both rows and columns!
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Laplacian matrix
• The smallest eigenvalue is 0, the corresponding

eigenvector is the constant one 1 (when > � 4 � ,)
• N non-negative real-valued eigen-values

0 � @1 A @2 A ⋯ A @�

• The smallest non-zero eigenvalue of L is called the
spectral gap .

The gap can be seen as a quality mesure of
the clustering
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Graph spectrum

• The	spectrum os a graph G is the multiset of the 
eigenvalues of the Laplacian matrix or the graph 

associated with it

Spec F � @1…@GH1…HG

where	@1…@G	is	the	set	of	distinctdistinctdistinctdistinct	eigenvalues	
and			H1…HG	their	multiplicities.		
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Graph spectrum

• The Laplacian matrix depends on the vertex labeling,
– Re-labeling = row & column permutation
– but its spectrum is invariant , it does not depend on the labeling

• Multiplicity of 0 eigenvalue is the number
of connected components � of the graph (i.e. clusters)

• The corresponding eigenvectors are the indicator 
vectors 1S1, … , 1S� of those components

Number of clusters need
not be known!?
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Clustering as a graph -theoretic 
problem

• Given a similarity graph with affinity matrix A the simplest 
way to construct a partition is to solve the min-cut problem:
– Choose the partition T1, … , T� that minimises 

cut T1, … , T� � 1
2���T�, T�U  

�

���
			where	� T1, T2 � � ���, � 

�∈V�,�∈V&

Min-cut

T1

T2
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Clustering as a graph -theoretic 
problem – An example

• We require 2 clusters
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Clustering as a graph -theoretic 
problem – An example

• cutcutcutcut 2, W � 1
X∑ Z[[\]\^_�2,W .∈2,/∈W � 0. `
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• Min-cut can be solved efficiently especially for � � 2
• Does not always lead to reasonable results if the 

connected components are not balanced

Clustering as a graph -theoretic 
problem

Min-cut

T1

T2

• Workaround: Ensure that 
the partitions T1, … , T�	are 
sufficiently “large” 

• This should lead to more 
balanced partitions
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Clustering as a graph -theoretic problem

• Ratio-cut [Hagen and Kahng, 1992]: The size of a subset T is measured 
by its number of vertices T

abc.defc g1, … , gh � 1
X�2�g., gU. 

g.

h

.�1
� �cutcutcutcut�g., gU. 

g.

h

.�1

• Normalised cut [Shi and Malik, 2000]: The size of a subset T is 
measured by the weights of its edges vol�T 

<efc g1, … , gh � 1
X�2�g., gU. 

volvolvolvol�g.  
h

.�1
� �cutcutcutcut�g., gU. 

volvolvolvol�g. 
h

.�1

• Min-max cut [Ding et al. 2001]: 

i.j � ibk � efc g1, … , gh � 1
X� 2�g., gU. 

2�g., g.  
h

.�1
� �cutcutcutcut�g., gU. 

2�g., g. 
h

.�1

Min similarity between Max similarity within
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Clustering as a graph -theoretic problem
• Due to the normalisations introduced the solution becomes NP-hard
• Relaxing NcutNcutNcutNcut				 and Min�Max�CutMin�Max�CutMin�Max�CutMin�Max�Cut				lead to normalised spectral clustering. 

Relaxing RatioCutRatioCutRatioCutRatioCut				leads to unormalised spectral clustering [von Luxburg
2007]

• Relaxed RatioCut solution: eigenvectors
p � 61, 6X, … , 6h 			!. G. 	q6h � rh6h																where	q � : � -

• Relaxed Ncut solution: eigenvectors 
s � f1, fX, … , fh 		!. G. 		 t	 � qsymsymsymsym fh	 � 	rhfh			where					qsymsymsymsym � :%0.v2:%0.v

• Relaxed Min-Max-cut solution: eigenvectors
s � f1, fX, … , fh 		!. G. 						qsymsymsymsymfh	 � 	rhfh			where					qsymsymsymsym � :%0.v2:%0.v

• Quality of solution with relaxation is not guaranteed compared to exact solution
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Spectral clustering Method #1
[Perona and Freeman 1999]

• Partition using only one eigenvector at a 
time

• Use procedure recursively
– Uses 2nd (smallest) eigenvector to define 

optimal cut 
– Recursively generates two clusters with 

each cut
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Spectral clustering Method #2
[Shi and Malik 2000, Scott and Longuet-Higgins, Ng et al. 2002]

• Use the k smallest eigenvectors
• Directly compute k-way partitioning
• Usually performs better

• We will be using this approach from 
now on
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A spectral clustering algorithm
Input : Data matrix w ∈ x<yz (<	=data points, z = dimensions), 
h number of clusters

• Construct pairwise affinity matrix 2 ., / � {k| � k.%k/
X}X 	

• Construct degree matrix : � diagdiagdiagdiag�51, … , 5< 
• Compute Laplacian q � : � 2
• Compute the �	smallest eigenvectors f1, … , fh of q
• Let ~ ∈ x<yh contain the vectors f1, … , fh as columns

• Let �. ∈ xh be the vector corresponding to the i-th row of ~
• Cluster the points ��. . � 1,… ,< into h clusters �1, … , �h with k-means

Output : Clusters g1, … gh with g. � �/|�/ ∈ �.�

For example!

A ≈ W

k known !?

One yi per point
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Why not just use k-means ?
• One could use k-means directly in the data space (or some 

other clustering approach such as mean shift)
• S.C. separates data (based on affinity) into projecting in the 

low-dimensional eigenspace (rows of U)
• Allows clustering of non-convex data

Before spectral clustering After spectral clustering

Original 
data 
space

Space 
spanned
by the 
columns
of U
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Why not just use K-means ?

K-means Spectral clustering

We do K-means
here instead
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Simple example revisited

• Now we will use spectral clustering instead
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Step 1: Pairwise affinity matrix

X1 X2 X3 X4 X5 X6

X1 0 0.8 0.6 0 0.1 0

X2 0.8 0 0.8 0 0 0

X3 0.6 0.8 0 0.2 0 0

X4 0 0 0.2 0 0.8 0.7

X5 0.1 0 0 0.8 0 0.8

X6 0 0 0 0.7 0.8 0
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Step 2: Laplacian matrix

> � 4 � �
X1 X2 X3 X4 X5 X6

X1 1.5 -0.8 -0.6 0 -0.1 0

X2 -0.8 1.6 -0.8 0 0 0

X3 -0.6 -0.8 1.6 -0.2 0 0

X4 0 0 -0.2 1.7 -0.8 -0.7

X5 -0.1 0 0 -0.8 1.7 -0.8

X6 0 0 0 -0.7 -0.8 1.5
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Step 3: Eigen -decomposition
• Eigen-values @=

• Eigen-vectors � �

0

0.18

2.08

2.28

2.46

2.57

-0.4082 0.4084 …

-0.4082 0.4418 …

-0.4082 0.3713 …

-0.4082 -0.3713 …

-0.4082 -0.4050 …

-0.4082 -0.4452 …

~
< y h
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Step 4: Embedding
• �=

• � � row_normalise�� 

-0.4082 0.4084

-0.4082 0.4418

-0.4082 0.3713

-0.4082 -0.3713

-0.4082 -0.4050

-0.4082 -0.4452

-0.7070 0.7072

-0.6786 0.7345

-0.7398 0.6729

-0.7398 -0.6729

-0.7099 -0.7043

-0.6759 -0.7370

• Each row of � is a point in
”eigenspace”
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Step 5: Clustering
• k-means clustering with 2 clusters
• Easy, convex clustering problem

k-means

A

B
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Choices choices …
• Affinity matrix construction (distance and kernel)

• Choice of kernel parameter � (scaling factor)
– Practically, search over � and pick value that 

gives the tightest clusters

• Choice of �, the number of clusters

• Choice of clustering method
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Data space

Matrices:
Affinity

Laplacian
Graphs

Eigenspace
(rows of U)

Graph
cuts

Matrix
(graph)

spectrum

Eq

AffinitiesAffinities

k-means
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Summary
• We have seen so far

– Basic definitions of cluster, clustering and cluster quality
– Graph basics, affinity, graph construction, graph spectrum
– Graph cuts
– Spectral clustering and graph cuts
– A spectral clustering algorithm and a simple example
– k-means and spectral clustering

• For the next lecture
– Intuitive explanation of different S.C. algorithms


