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Overview

» Issues with standard RANSAC
- Maximum-likelihood scoring

- LO-RANSAC

+ Preemptive RANSAC

- DEGENSAC

Not covered here: All the other variants
RANDOMIZED RANSAC, G-SAC, NAPSAC etc.

Paper to read for next week: PROSAC
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RANSAC issues

In lecture 3 we introduced RANSAC
(Fischler&Bolles 81).

It finds a model with maximal support in the
presence of outliers

Approach: randomly generate hypotheses and
score them.

Most novelties since 1981 covered in thesis by:
Ondrej Chum, Two-View Geometry Estimation
by Random Sample and Consensus, July 2005
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RANSAC issues

S - correspondence set, K - number of trials
for k=1:K
s=sample draw minimal (S)
m=model estimate(s)
[v,inliers]=model score(m,S)
1f v>best v
best inlier set=inliers
best v=v
best m=m
end
end
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RANSAC issue #1

Underlying optimization problem:

e=> Y wil[xw — proj(Xe, 6)|> vr €{0,1}
k [

score IS a discrete Inlier count:
S — Z?}k
k

there may be many equally good optima!
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RANSAC issues #2 and #3

Two more problems with the original approach:

(a)

Inlier noise

(b)

Near degeneracies
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RANSAC issue #3

Near degeneracies can be dealt with by sampling
non-randomly, e.g.

- DEGENSAC, for F estimation in plane dominant
scenes. Chum et al., Two-view Geomeftry

estimation unaffected by a Dominant Plane,
CVPRO05
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RANSAC issue #3

Near degeneracies can be dealt with by sampling
non-randomly, e.g.

- DEGENSAC, for F estimation in plane dominant
scenes. Chum et al., Two-view Geomeftry

estimation unaffected by a Dominant Plane,
CVPRO05

» Distance constraint for points used in E
estimation. Hedborg et al., Fast and Accurate

Structure and Motion Estimation, ISVC09
Reduces #iterations by 50% in forward motion.
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Maximum likelihood scoring

Underlying optimization problem:

e=> Y wil[xw — proj(Xe, 6)|> vr €{0,1}
k [

score IS a discrete Inlier count:
S — Z’Uk
k

there may be many equally good optima!
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Maximum likelihood scoring

Better to use a robust error norm:

7
6
5
4

£ = L L ,O(Xk:l — pI‘Oj (Xk, (9[)) : \/
k [ o s o s
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Maximum likelihood scoring

Better to use a robust error norm:

g = LL/O Xkl — PTOJ(Xk:a@l))

and as score, the minimum error (MLESAC)

S = —¢
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Maximum likelihood scoring

Better to use a robust error norm:

€ = LLP X} — Proj leez)) §§

and as score, the minimum error (MLESAC)
S = —¢

called maximum likelihood scoring

See: Torr & Zisserman, MLESAC: A new robust
estimator with application to estimating image
geometry, CVIU 00
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LO-RANSAC

Inlier noise means that the heuristic for
number of samples to draw:

N =log(1 —p)/log(l — w?)

IS overly optimistic.

A small modification makes the heuristic

work again: Chum et al., Locally
Optimized RANSAC, DAGMO03
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LO-RANSAC

Small modification:

S - correspondence set, K - number of trials
for k=1:K
s=sample draw minimal(S)
m=model estimate(s)
[Vv,inliers]=model score(m,S)
if v>best v
[inliers,v,m]=local optimization(inliers,v,m)
best inlier set=inliers
best v=v
best m=m
end
end
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LO-RANSAC

Chum tries four variants of local optimisation:

1. Linear estimation from all inliers
2. Iterative linear estimation with
decreasing inlier threshold.

3. Inner RANSAC
4. Inner RANSAC with #2.

3 and #4 worked best, and #4 came close to
the heuristically expected #samples.
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LO-RANSAC

The inner RANSAC step uses non-minimal sample
sets. Errors for linear F estimation:

3 ’

2.5

Average error
—
($))

0.5-

Epipolar geometry from sampled points

0'.-/:""':_;: — L

0.1

0.2 0.3 0.4
Noise level

0.5

~N @

~ 14

0.6

~ ALL

June 3, 2014

Computer Vision lecture 5b

16



(% Computer Vision Laboratory

Open source

Lebeda, Matas, Chum, Fixing the Locally
Optimized RANSAC, BMVC’12

C/C++ library available on the web. Source code
on request. The "Fixes” are:

1. Maximum likelihood scoring (i.e. MLESAC)
2. lterative Reweighted Least-Squares on
random subsets of bounded size (7xmin_subset)
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Preemptive Ransac

David Nister, Preemptive RANSAC for
live structure and motion estimation,
ICCVO03

Total time for RANSAC is given by:
t = k(tM -+ E[ms]tv)

k- #iterations ty-model estimation time,
tv-verification time. ms - #models/iteration
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Preemptive Ransac

David Nister, Preemptive RANSAC for

live structure and motion estimation,
ICCVO03

Total time for RANSAC is given by:
t = k(tM -+ E[ms]tv)

k- #iterations ty-model estimation time,
tv-verification time. ms - #models/iteration

If many correspondences, tv will dominate.
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Preemptive Ransac

ldea: Do a probabilistic verification instead.
t = k(tM -+ E[ms]tv)

+ |In a real-time system, t is fixed, so if we
reduce tv we may increase K.

- Preemptive RANSAC does this by
evaluating all hypotheses in parallel.

» In each step, a fixed number of most
promising hypotheses are kept.
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Preemptive Ransac

Preemptive RANSAC.:

1. Generate (1) hypotheses in parallel.
2. For n=1 to N
3. Evaluate f(n) hypotheses on
a random correspondence
4. Keep the f(n+1) best hypotheses

according to accumulated SCOre.

f(1)=M and f(n+1)< f(n)
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Preemptive Ransac

f(n) - the preemption function
f(n) = [M27 5]
B - block size (f only changes every B
steps)
M - number of models
Accumulated scoring  L(m Zp n,m)

Log-likelihood of sample n given ‘model m
p(n, m)
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Degensac

Chum, et al., Two-view Geometry Estimation
Unaffected by a Dominant Plane, CVPR’05

Planar dominant scenes are also problematic
' A
[
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Degensac

Actually, the F estimation problem is even worse
than it might appear, as 5 points in a plane +2
arbitrary correspondences gives an F
compatible with the plane.
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Degensac

Actually, the F estimation problem is even worse
than it might appear, as 5 points in a plane +2
arbitrary correspondences gives an F
compatible with the plane.

In le5 we saw that if all seven points are in a
plane, then

Xngk:O,Xk:Hyk, k=1...7

and F =J[e|].H for any epipole e
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Degensac

If six points are in a plane
XZFyk;:O, k=1...7 Xk:Hyk, k=1...6

F:[G]XH for GERS, eT(HX7XY7):O

camera l camera 2
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Degensac

If six points are in a plane
Xngk:O, k=1...7 Xk:Hyk, k=1...6
F = [G]XH for GERS, eT(HX7XY7):O

world plane

camera 1 @ camera 2

.
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Degensac

If six points are in a plane
Xngk:O, k=1...7 Xk:Hyk, k=1...6

F:[G]XH for GERS, eT(HX7><y7):O

For five points in the plane
xg X (Hyg) and x7 x (Hy7)

define two lines that intersect in e. F will have all
points consistent with H as inliers.
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Degensac

If six points are in a plane
Xngk:O, k=1...7 Xk:Hyk, k=1...6

F:[G]XH for GERS, eT(HX7><y7):O

For five points in the plane
xg X (Hyg) and x7 x (Hy7)

define two lines that intersect in e. F will have all
points consistent with H as inliers.

Also used Iin plane+parallax algorithm
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Degensac - detection

FromF and {xr < yx}i—1 we can compute a
homography H=A —e; (M 'b)?!
Where A = [el]xF M = [Xl X9 Xg]T

and by = (xi x Ayp)' (x5 x e1)||xx X er|| 7
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Degensac - detection

FromF and {xr < yx}i—1 we can compute a
homography H=A —e; (M 'b)?!

where A =[e;]xF M= [x; x5 x3]"
and b, = (xx X Ayr)' (xx X eq)|[xk X eq]]| 7

This H is now checked for two additional
inliers. If found, F is said to be H-degenerate
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Degensac - detection

7
There are (5> =21 ways to pick five
points from 7.

But, if we pick the 3 points that define H as
1,2,3},{4,5,6},{1,2,7},{4,5,7},{3,6,7}
We will have covered all 21 permutations.

Thus at most five H need to be computed
and tested to find out if F is H-
degenerate.
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Degensac

DEGENSAC algorithm

1. Select 7 random correspondences and estimate F
2. IF best support this far
3. IF H-degeneracy
4. Do inner RANSAC and estimate F
from H and 2 correspondences
that are inconsistent with H
(Plane+Parallax algorithm)

5. IF new F has even bigger support, store F
6. ELSE store H
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Paper to discuss next week...

Ondrej Chum and Jiri Matas, Matching with
PROSAC -- Progressive Sample
Consensus, CVPR'05

June 3, 2014 Computer Vision lecture 5b 34



