Geometry in Computer Vision

Spring 2014
Lecture 7A
Representations of 3D rotations

Geometry in Computer Vision Klas

3 e 4
13 June 2014 Nordberg

PnP

* We can solve PnP by minimizing

H
2

epnpGEo = 3, dpp(Yi Vi)
k=1

where y;, = RX; +1,

over R e SO(3)and t € R3

e |nitial solution from P3P
* We need to parameterize R € SO(3)

Geometry in Computer Vision

13 June 2014 Klas Nordberg

SfM

e A similar case appears in SfM, where we
minimize
m P

epr =},) wijdpp(Yij Cix;)”.
=1 j=1

over the camera poses: C, ~ (R, t,)

e Each rotation R, € SO(3) needs to be
parameterized

Geometry in Computer Vision

13 June 2014 Klas Nordberg

Parameterization of SO(3)
e Each R € SO(3) is a 3 x 3 matrix that satisfies
R'R=| and det(R) =+1

e How can we change R to R’ such that these
constraints are maintained?

Geometry in Computer Vision

13 June 2014 Klas Nordberg

Axis-angle representation

* Any rotation R is characterized by
— a rotation axis n (normalized) (2 dof)
— a rotation angle « (1 dof)
such that R rotates the angle o about n
according to the “right-hand rule”

(n, o)
same R as
('nr -Oé)

Rodrigues’ rotation formula

e Given (n, o), how do we determine R?

* Use Rodrigues’ rotation formula:

R(h, o) =0h" +coso (I-AA") +sina [f],.
R, o) =1+ (1 —cosax) (AR —T) +sina [,

R(f, o) = I+ (1 —cosa) [A]% +sino [A].

Rodrigues’ rotation formula

e Given R, how do we determine n and o
e Based on Rodrigues’ formula:

trace(R) — 1 R_RT
cose = ————.

* Notice: ambiguityata =7

Parameterization of SO(3)

Rodrigues

A

axisn

R € 50(3) angle

|||||||

The mapping (n, &) — SO(3) is
easy to implement and can be
differentiated w.r.t. (n, o)

Using so(3)

e s0(3) is the set of 3 x 3 anti-symmetric
matrices
 Can be parameterized by m € R3: [m],,

2 alternative mappings so(3) — SO(3)
— Matrix exponential
— Cayley transformation

so(3)

e [m], € so(3) has eigensystem:

0, +i |m|, - |m| eigenvalues

eigenvectors

m, p-iq, p+iq

where (m, p, q) is a right-handed
orthogonal basis in R3

Matrix exponential

* The matrix exponential function is defined for
a square matrix M as

I
_[+M+2M“+ M’

_Z;\vMI\

Matrix exponential

e If M is diagonalized by unitary E:

M=EDE’, D diagonal,

eigenvalues

its exponential can be expressed as

d 0 ... 0

« 0 do ... O
eM=EeDE €xp S =

dn

0o 0 ...

E'E=1I

eigenvectors

Based on the properties of the eigensystem of
[m]., in combination with Rodrigues’ formula:

eclnlx = R(n,

Exp of so(3)

)

exp : so(3) — SO(3)

This mapping is onto
It is not one-to-

one

Exp of so(3)

* There is an inverse function: log M
log[R(n,)] = a[n],, (multiple-valued)

* Matlab: expm and logm

Parameterization of SO(3)

R €S0(3)

exp

A

so(3)

The exp mapping can be implement and
can be differentiated w.rt. m=an
But less trivial than (n, &) — SO(3)

Cayley transformation

If M € so(3), then

C(M) = (1-M) (1 + M) € SO(3)

C :so(3) — SO(3)

This mapping is almost onto

e 180° rotations cannot be written as C(M)
It is one-to-one on this domain

Cayley transformation

e If M =[a n], for normalized nand a € R:
C(M) =R(n, o), a=tan(a/2)
* Inverse transformation:

M = (1= R)(I + R)"L = C(R)

Parameterization of SO(3)

A

R € S0(3) M € so(3)

C(R)

The C mapping is easy to implement.
It can be differentiated w.r.t. M = [m],
But less trivial than (n, &) — SO(3)

Quaternions

e Quaternions can be seen as a generalization of
complex numbers to the case where we have
three distinct imaginary units:

q=a+ib+jc+kd | ik
-1k =
—k -1]

j =i -1

o
I
I J
k

Quaternions

Alternatively, we can see H as an algebra on
R4, allowing us to multiply vectors in R* to
produce vectors in R*

Alternatively, we can see H as an algebra on
R x IR3, consisting of ordered pairs of a real
number and a vector in R3

a=(sv) € H
a2 =57+ |v]?

Quaternions

e Given q, =(s;, v4) and g, = (s,, V,):

g+, =(S;+5S,, Vv +V,)

4,00y = (S; Sy =V V,, S;V, + S,v; + vy XV,)

Quaternions

e Quaternion algebra satisfies
O ois distributive over +
U ois associative
U (1, 0) is the unique identity element of o
U Unique inverse of q = (s, v) is (s, -v)/|q]?
* But:

U o is not commutative: g, 0q, #9, 0 q,
(in general)

Quaternions

e Unit quaternionqg: |g| =1

e A pure quaternion: q = (0, v)

— Pure quaternions can be seen as a representation

of R3in H

e Any unit quaternion q € H can be written as
g = (cos(a/2), sin(a/2) n)
for some o and |n|=1.

* Any u € R3 can be represented as a pure
quaternion p=(0,u) e H

Quaternions and SO(3)

Sandwich product:

qopoqgt=..=(0,R(n, a)u)

Each rotation can be represented by a
quaternion g = (cos(a/2), sin(a/2) n)

Double embedding: both g and —q works

Geometry in Computer Vision

From H to SO(3)

e Given unit quaternion
d = (91, 92 93, G4) = (cos(a/2), sin(a/2) n):

AT P A E! atae—a—a1 2eq—q1q4) 2(q193 +q2q4)
R=\|r m m|=| 2¢ps+qq) ¢—a@tad—a 2qgpq:—qq)
I 1 2Aqpqa—q193) 2qi@+q3q1) ¢ —qr— g+ 4]

(A)

e Each element in R is a quadratic function in g

Geometry in Computer Vision

13 June 2014 Klas Nordberg 25 13 June 2014 Klas Nordberg 26
From SO(3) to H Parameterization of SO(3)
* From the previous mapping: "
» l+ri o+ 2y l+rii—rn—ry <
2 TN IATS 2T eH
i 7 N 7 ! R € 50(3) a
e, e, lal=1
> l—rn+rn—ry3 2 l=rii—rm+ry
B=—" 1 = G=— 1 (B
and
riz+r =4q4;3, ri3+ra = 44294, r3+ra=4q3qa,
r—ri=4q144, riz—ri = 44193, raa—rmy=4q192. Both (A) and (B) are easy to implement.
(A) can be differentiated w.r.t. unit
rnion R4
(B) quaternion g €
13 June 2014 Geometry in Computer Vision 27 13 June 2014 Geometry in Computer Vision ¢

Klas Nordberg

Klas Nordberg

Euler angles Euler angles

We can decompose any R € SO(3) into a e There are straight-forward mappings
product of 3 rotations around fixed axes

(o), a,,) <> R € SO(3)

For example:

* Notice: rotations about the z-axis always have
R = Rot,(a,) Rot,(a,) Rot,(a,) an ambiguous representation:
(o}, o, 0;) are the Euler angles of R R(a,, 0, o) = R(a,+A4, 0, a3—A)

Euler angles

This ambiguity implies that D, the derivatives
of R with respect to (o, ., a3) is rank
deficient when a, =0

If Euler angles are use as a parameterization of
R in a non-linear optimization, there will be a
stationary point for all points («,, 0, c,) where
the optimization can get stuck

