A vector space A vector space V consists of a set of vectors Two vectors can be added A vector can be multiplied by a scalar Geometry in Computer Vision - Both operations result again in a vector in V - Sets of vectors can be linearly combined into a new vector • The dimension of V =maximal number of vectors which are linear independent Spring 2010 Basis exists Orthogonality between two vectors defined if we have a Lecture 1 scalar product **Projective Geometry** Linear mappings are well-defined 2 A projective space A projective space • The projective space generated from V consist • A projective space can be defined from V

3

- in terms of equivalence classes:
 - Two vectors **u** and **v** are equivalent if there exists a non-zero scalar s such that $\mathbf{u} = s \mathbf{v}$ \Rightarrow **u** and **v** must be non-zero vectors
 - All vectors which are equivalent correspond to an element of the projective space (a projective element)
 - Projective equivalence is denoted $\mathbf{u} \sim \mathbf{v}$

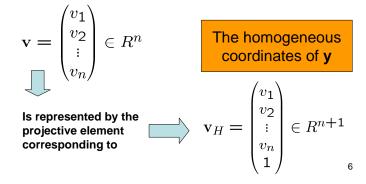
- of all such projective elements
 - Any projective element correspond to a 1D subspace of V
 - Any projective element has a non-unique representation of non-zero vectors in V
 - Any non-zero element of V corresponds to a unique projective element
- The projective space is (here) denoted P(V)

A projective space

- Dimension of $P(V) = \dim(V) 1$
- Addition and scalar multiplications are undefined operations in *P*(V), no linear combinations
- No basis exists
- Orthogonality is well-defined!
 - Two projective elements are orthogonal iff their representative vectors are orthogonal
- A *linear* mapping M : V → U
 produces a well-defined mapping P(V) → P(U)

Projective representation

• The *n*-dimensional vector space *Rⁿ* can be given a projective representation by the projective space *P*(*Rⁿ⁺¹*)



Example

5

7

$$\mathbf{v} = \begin{pmatrix} 1\\2 \end{pmatrix} \Rightarrow \mathbf{v}_H = \begin{pmatrix} 1\\2\\1 \end{pmatrix} \sim \begin{pmatrix} 2\\4\\2 \end{pmatrix} \sim \begin{pmatrix} \frac{1}{2}\\1\\\frac{1}{2} \end{pmatrix}$$
All these vectors in R^3 represent the same projective element

Homogeneous normalization

- Given an a vector u∈Rⁿ⁺¹ we can scale it so that the last element = 1 ⇒ normalization (can we always do this?)
- The first *n* elements in the normalized homogeneous vector are the vector in *Rⁿ* that **u** represents
- This makes it possible to know which vector in Rⁿ a specific projective element in P(Rⁿ⁺¹) represents

Projective representation of the Euclidean space

- The elements of vectors in R² and R³ are the coordinates of points in 2D or 3D Euclidean spaces relative to some specific coordinate systems
- We use the projective representation of R² given by P² = P(R³)
- We use the projective representation of R³ given by P³ = P(R⁴)

Projective representation of the Euclidean space

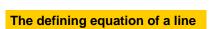
Motivation

- A corresponding representation can be found also for lines in 2D and lines + planes in 3D.
- Operations on these geometric object are <u>much</u> <u>easier</u> to describe algebraically in a projective space than in standard Euclidean coordinates
 - Find the point of intersection between a 3D plane and a 3D line
- "Exceptional cases" can be included in the same representations
 - Example: All 2D lines intersect at one point, except if the lines are parallel or identical

A homogeneous representation of lines in 2D

- Let y = (y₁,y₂) be the Euclidean coordinates of a 2D point
- Any 2D line is characterized by an angle α and a scalar L such that

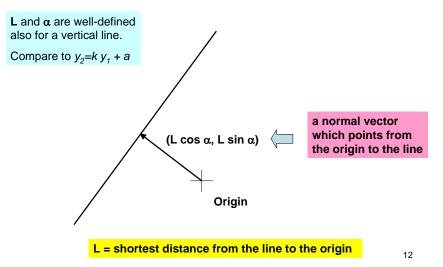
y lies on the line \Leftrightarrow $y_1 \cos \alpha + y_2 \sin \alpha = L$



9

11

A homogeneous representation of lines in 2D



A homogeneous representation of lines in 2D

• **y** lies on the line \Leftrightarrow **y**₁ cos α + **y**₂ sin α = *L*

y lies on the line
$$\Leftrightarrow \begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \cos \alpha \\ \sin \alpha \\ -L \end{pmatrix} = 0$$

Homogeneous coordinates of y

A homogeneous representation of lines in 2D

• Suggests a homogeneous representation of the line:

$$\mathbf{l}^H = \begin{pmatrix} \cos \alpha \\ \sin \alpha \\ -L \end{pmatrix}$$

- **y** lies on the line \Leftrightarrow **y**_H · **I**^H = 0
- I^H is the (dual) homogeneous coordinates of the line

Dual homogeneous normalization

- Given a non-zero vector in R³ we can determine which line it represents by scaling it such that
 - The norm of elements 1 and 2 equals 1
 - Third element is non-positive (≤ 0)
- The elements of the normalized vector directly gives α and L

The cross product

• The cross product $\mathbf{a} \times \mathbf{b}$ for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$

 $\boldsymbol{a}\times\boldsymbol{b}$ is orthogonal to \boldsymbol{a} and \boldsymbol{b}

 $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ if $\mathbf{a} = \mathbf{b}$

$$\mathbf{a} imes \mathbf{b} = - (\mathbf{b} imes \mathbf{a}) \sim (\mathbf{b} imes \mathbf{a})$$

13

The cross product operator

- For a fix vector **a**, the cross product with **b** is a linear mapping on **b**
- The "**a** ×" mapping can be represented by an anti-symmetric 3×3 matrix $[a]_{\sim}$:

$$[\mathbf{a}]_{\times} = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix} \text{ with } \mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

such that $\mathbf{a} \times \mathbf{b} = [\mathbf{a}]_{\mathbf{b}}$

Special case 1

- If the two lines are identical
 - y is not unique
 - any point on the line is an intersection point
- In this case: $\mathbf{I}_1^H \times \mathbf{I}_2^H = \mathbf{0}$
- We can use the result = 0 to flag that the lines are identical, i.e., the result is not a specific point

Result = $0 \Rightarrow$ multiple solutions exist

The intersection of two lines

- Let \mathbf{I}_1^{H} and \mathbf{I}_2^{H} be the dual homogeneous representation of two lines in 2D
- Wanted: the intersection point **x** between the lines
- Its homogeneous representation \mathbf{y}_{H} must satisfy $\mathbf{y}_{\mathrm{H}} \cdot \mathbf{I}_{1}^{\mathrm{H}} = \mathbf{y}_{\mathrm{H}} \cdot \mathbf{I}_{2}^{\mathrm{H}} = 0$
 - \Rightarrow **y**_H is orthogonal to both **I**₁^H and **I**₂^H

Special case 2

• If the two lines are distinct but parallel, **y** is "undefined", but ...

$$\mathbf{l}_{1}^{H} = \begin{pmatrix} \cos \alpha \\ \sin \alpha \\ -L_{1} \end{pmatrix} \quad \mathbf{l}_{2}^{H} = \begin{pmatrix} \cos \alpha \\ \sin \alpha \\ -L_{2} \end{pmatrix} \qquad \begin{array}{c} \text{Cannot be normalized} \\ \text{to represent a 2D point} \\ \end{array}$$
$$\mathbf{l}_{1}^{H} \times \mathbf{l}_{2}^{H} = (L_{1} - L_{2}) \begin{pmatrix} \sin \alpha \\ -\cos \alpha \\ 0 \end{pmatrix} \sim \begin{pmatrix} \sin \alpha \\ -\cos \alpha \\ 0 \end{pmatrix} \begin{pmatrix} \sin \alpha \\ -\cos \alpha \\ 0 \end{pmatrix}$$
Assuming the lines are distinct 20

17

Points at infinity

- The result in this case can be used to represent a "point at infinity"
 - The normalization suggests that the corresponding 2D point lies at infinite distance from the origin
- This is a single point even though there are two directions to look for this point
 - An abstraction of an orientation of a line in 2D
- Given "for free" as elements in P^2
- The result of an operation which maps onto *P*² is either a proper 2D point or a point at infinity

21

Line intersecting two points

- Let y_{1H} and y_{2H} be the homogeneous coordinates of two points in 2D
- We want to find the line which intersects both points
- Its dual homogeneous representation I^H must satisfy

$$\mathbf{y}_{H1} \cdot \mathbf{I}^{H} = \mathbf{y}_{H2} \cdot \mathbf{I}^{H} = 0$$

 \Rightarrow I^H is orthogonal to y_{H1} and y_{H2}

 \mathbf{y}_2 **y**₁

 $\mathbf{I}^{H} = \mathbf{y}_{H1} \times \mathbf{y}_{H2}$

Special case 1

- If the two points are identical, the line is not unique: any line going through one point goes through the other
- In this case: $\mathbf{y}_{\text{H1}} \times \mathbf{y}_{\text{H2}} = \mathbf{0}$
- We can (again) use the result = 0 to flag that the points are identical, i.e., the result is not a specific line but rather a set of lines

Special case 2

- This operation still works also when only one of the two points is a point at infinity:
 - The resulting line goes through the first point
 - In the orientation given by the second point (the point at infinity)

Special case 3

• The operation even works when both points are points at infinity:

$$\mathbf{x}_{1H} = \begin{pmatrix} \cos \alpha \\ \sin \alpha \\ 0 \end{pmatrix} \quad \mathbf{x}_{2H} = \begin{pmatrix} \cos \beta \\ \sin \beta \\ 0 \end{pmatrix} \quad \begin{array}{c} \text{Cannot be normalized} \\ \text{to represent a 2D line} \\ \mathbf{x}_{1H} \times \mathbf{x}_{2H} = \sin(\alpha - \beta) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sim \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
Assuming the points at inifity are distinct 25

Notation

- In the following, most vectors are homogeneous representations of points or lines
 - Drop the H
 - Use y to denote homogeneous coordinates of a 2D point. y is then an element of P²
 - The corresponding 2D point is also called **y** !
 - Use I to denote dual homogeneous coordinates of a 2D line. I is then an element of P²

27

- The corresponding line is also called I !

The line at infinity

- The result in this case can be used to represent a "line at infinity"
 - The normalization suggests that the corresponding 2D line lies at infinite distance from the origin
- There is only one single line at infinity
 - Represents the line which intersects with any distinct pair of points at infinity
 - An abstraction of a circle at infinite distance from the origin
 - Given "for free" as an element of P^2
 - The result of an operation which maps onto P² can be either a proper 2D line or the line at infinity

26

Affine coordinate transformations

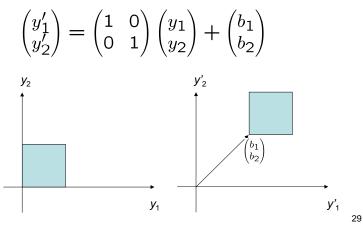
 A 2D point y is transformed to y' such that the corresponding Euclidean 2D coordinates are related as

$$\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

• This transformation is called affine

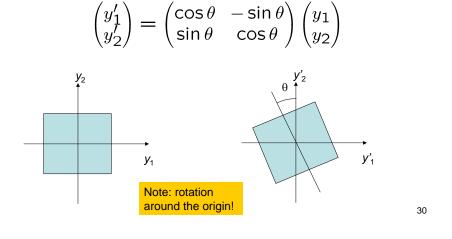
Affine coordinate transformations

• Translation:



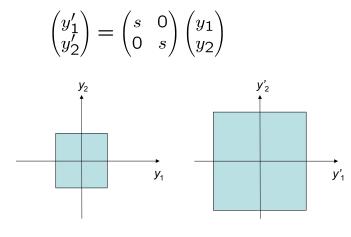
Affine coordinate transformations

Rotation:



Coordinate transformations

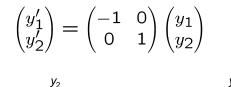
• Scaling

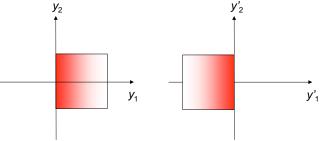


31

Coordinate transformations

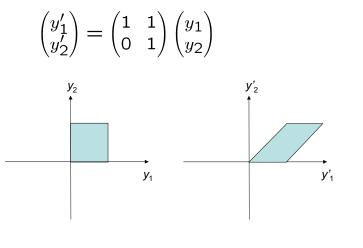
• Mirroring





Affine coordinate transformations

• Skewing



Affine coordinate transformations

• In homogeneous coordinates:

. . .

$$\mathbf{y}' = \begin{pmatrix} y_1' \\ y_2' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix}$$
$$\mathbf{y}' = \begin{pmatrix} y_1' \\ y_2' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{y} = \mathbf{T} \mathbf{y}$$

All these transformations are represented as \underline{linear} mappings **T** onto the homogeneous coordinates

34

Coordinate transformations

- The composition of two such matrices is again a matrix of this type: a matrix group
 - Rotation around an arbitrary point can be represented as a composition of translation-rotation-translation
- The 3 \times 3 transformation matrix is itself an element of a projective space
 - A multiplication by a non-zero scalar onto the matrix can be moved to either of the two homogeneous vectors y or y' which gives equivalent homogeneous vectors
- The transformation matrix can be more general than described here
 - More on this after the 3D case has been described

35

33

2D coordinate transformations

- Let y ∈ P² homogeneous coordinates of a 2D point
- Let T be a 3 × 3 matrix which represents some coordinate transformation: y' = T y
 - Note that y' represent the same point as y but in a different coordinate system!!
- Let I be a line that includes y: $I \cdot y = 0$ (why?)
- If then follows that I transforms to $I' = (T^T)^{-1} I$
- (**T**^T)⁻¹ is called the *dual* transformation of **T**₁

A homogeneous representation of A homogeneous representation of planes in 3D planes in 3D • Let (x_1, x_2, x_3) be the Euclidean coordinates of a 3D point x Any 3D plane is characterized by a unit (Ln₁, Ln₂, Ln₃) vector $\mathbf{n} = (n_1, n_2, n_3)$ and a scalar *L* such a normal vector that which points from the origin to the plane **x** lies on the plane \Leftrightarrow $x_1 n_1 + x_2 n_2 + x_3 n_3 = L$ Origin The defining equation of a plane 37 L = shortest distance from the plane to the origin 38 A homogeneous representation of A homogeneous representation of planes in 3D planes in 3D • Suggests a homogeneous representation of the plane: • **x** lies on the plane \Leftrightarrow $x_1 n_1 + x_2 n_2 + x_3 n_3 = L$ $\mathbf{p} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \\ r \end{pmatrix}$ x lies on the plane $\Leftrightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \end{pmatrix} \cdot \begin{pmatrix} n_1 \\ n_2 \\ n_3 \\ r \end{pmatrix} = 0$ • **x** lies on the plane \Leftrightarrow **x** \cdot **p** = 0 • **p** are the (dual) homogeneous coordinates of the plane Homogeneous coordinates of x 39 40

Dual homogeneous normalization Points and planes at infinity • Given a vector in R^4 we can determine Similar to the 2D case: which plane it represents by scaling it such In 3D there are points at infinity that - Have last homogeneous coordinate = 0 - The norm of elements 1 to 3 equals 1 There is a single 3D plane at infinity - Fourth element is non-positive (≤ 0) - Intersects all 3D points at infinity • The elements of the normalized vector directly gives **n** and L • Similar to the 2D case: $\mathbf{x'} = \mathbf{T} \mathbf{x} \iff \mathbf{p'} = (\mathbf{T}^{\mathsf{T}})^{-1} \mathbf{p}$ 41 42 Affine transformations in 3D **BREAK!** • Simple extension from the 2D case!!

A homogeneous representation of lines in 3D

- 3D lines can be represented in several slightly different ways
- Here we will use
 - so called *Plücker coordinates* in the form of an anti-symmetric matrix

45

- Parametric representation:

$$x = x_0 + t n$$
 eller $x = t x_1 + (1 - t) x_2$

A homogeneous representation of lines in 3D

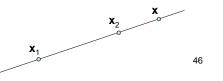
Define $\mathbf{L} = \mathbf{x}_1 \mathbf{x}_2^{\mathsf{T}} - \mathbf{x}_2 \mathbf{x}_1^{\mathsf{T}}$

- L is a homogenous representation of the line which intersects x₁ and x₂
- L is a 4 \times 4 anti-symmetric matrix: L^T = L
- L can be seen as a projective element (why?)
- Referred to as *Plücker coordinates* of the line
- As a projective element L is independent of which two distinct points on the line are used (why?) 47

Parametric representation of lines in 3D

- Let $\boldsymbol{x_1}$ and $\boldsymbol{x_2}$ be two distinct 3D points with $\boldsymbol{x_1},\,\boldsymbol{x_2}\in P^3$
- Any point **x** on the line can be written

 $\mathbf{x} = t \mathbf{x}_1 + (1 - t) \mathbf{x}_2$ for some $t \in R$



Intersection between a line and a plane in 3D

- Let L be the Plücker coordinates of a 3D line
- Let **p** the dual homogeneous coordinates of a plane
- Which is the intersection point **x**₀?

 $\mathbf{x}_0 \sim \mathbf{L} \, \mathbf{p}$

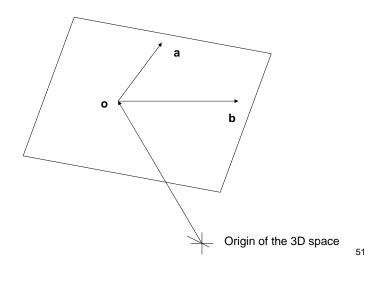
Characterized by
$$\mathbf{x}_0 \cdot \mathbf{p} = 0$$

Dual Plücker coordinates

- Alternatively, let ${\bm p}_1$ and ${\bm p}_2$ be two planes that intersect the 3D line
- L' = p₁p₂^T − p₂p₁^T is the dual Plücker coordinates of the line
- Independent of which 2 planes we use (as long as they are distinct and intersect the line)
- L'x gives the plane that includes the line and point x
- Relation between L and L'?

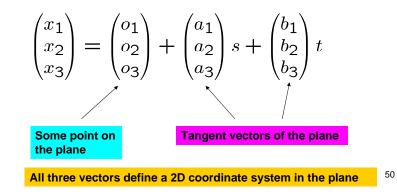
2D coordinates on a 3D plane

49

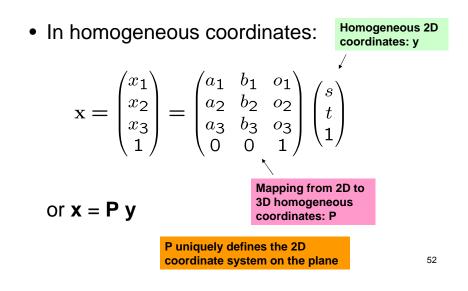


2D coordinates on a 3D plane

• The Euclidean coordinates of a 3D point in a plane can be described as



2D coordinates on a 3D plane



2D to 2D projective mappings

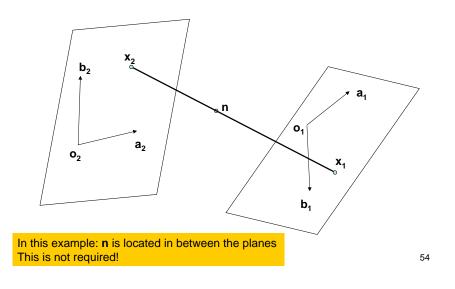
- Given
 - two 3D planes, each with its own 2D coordinate system, \textbf{P}_1 and \textbf{P}_2
 - a 3D point **n**

there is a unique mapping from one plane to the other:

Project a point \boldsymbol{x}_1 on the first plane through \boldsymbol{n} onto the second plane which gives \boldsymbol{x}_2

53

2D to 2D projective mappings



2D to 2D projective mappings

 The geometric relation between x₁, x₂, and n together with x₁ = P₁ y₁ and x₂ = P₂ y₂ leads to (why?)

 $\mathbf{y}_2 = \mathbf{H} \mathbf{y}_1$

• **H** is a 3×3 general non-singular matrix

• Depends on the two planes and on **n**

55

Homography

- This mapping on the 2D coordinates in the two planes is more general than the affine transformations described earlier!
- Called homography or projective transformation
- Any 3×3 non-singular **H** is a homography
- Describes e.g. how a pinhole-camera maps points on a plane to the image plane

Homography

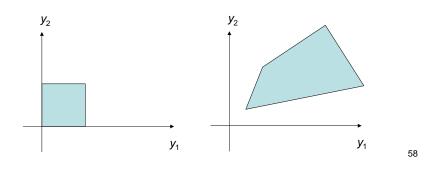
- Includes the affine transformations!
 - In the special case that the planes are parallel
 - In other cases: there are points at infinity that are mapped to normal points and vice versa
- We assume that **n** is not included in any of the two planes \Rightarrow **H** is always invertible
 - We can uniquely go from image coordinates to coordinates in the plane

57

• H always maps a line to a line (why?)

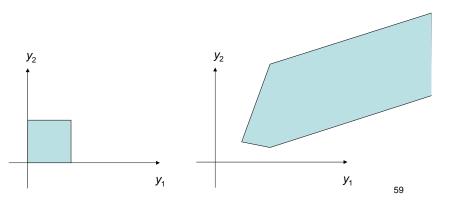
Homographies

Any homography is determined by how it maps 4 distinct points



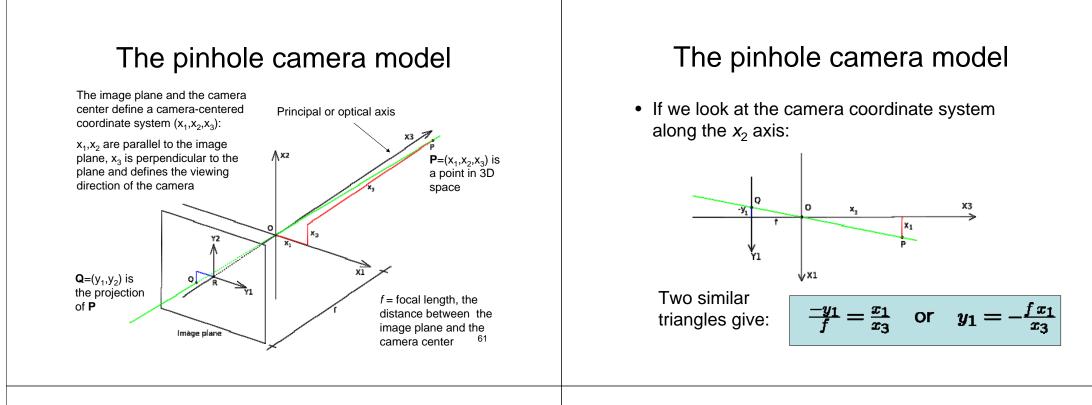
Homographies

• One or two of the 4 points may be at infinity



3D homography transformations

- The group of 4×4 non-singular matrices define the group of 3D homography transformations
- Analogue to the 2D case, but cannot be characterized in terms of projective mappings in a simple way



The pinhole camera model

- Looking along the x_1 axis gives a similar expression for y_2
- This can be summarized as:

$$egin{pmatrix} y_1 \ y_2 \end{pmatrix} = -rac{f}{x_3} egin{pmatrix} x_1 \ x_2 \end{pmatrix}$$

The virtual image plane

- The projected image is rotated 180° relative to how we "see" the 3D world
 - Reflection in both y_1 and y_2 coordinates = rotation
- Must be de-rotated before we can view it
- Mathematically this is equivalent to placing the image plane <u>in front</u> of the focal point
- Called a virtual image plane

The pinhole-camera

The mapping of 3D

nera centered

ordinates to 2D image ordinates defined by pinhole-camera in

• We now have:

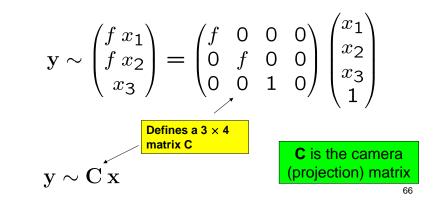
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \frac{f}{x_3} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \quad (x_2) \quad (x_2) \quad (x_2) \quad (x_3) \quad (x$$

In homogeneous image coordinates

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \frac{f}{x_3} \begin{pmatrix} x_1 \\ x_2 \\ x_3/f \end{pmatrix} \sim \begin{pmatrix} f x_1 \\ f x_2 \\ x_3 \end{pmatrix}$$

The pinhole-camera

Using also homogeneous 3D coordinates:



The normalized camera

• In the case of a normalized camera: f = 1

$$\mathbf{C}_{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Notation for the normalized camera matrix

The camera center

- In the camera centered coordinate system, the camera center (focal point) has 3D coordinates (0,0,0)
- The camera matrix maps this point to:

$$\begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = 0$$

 The homogeneous representation of the camera center lies in the null space of the camera matrix

The general camera matrix

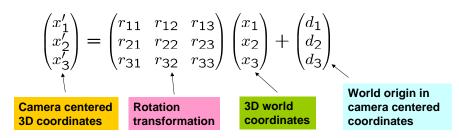
- The camera matrix defined so far assumes that both 2D and 3D coordinates are given in a <u>camera centered coordinate system</u>
- We want to be able to use
 - 3D coordinates in any coordinate system of our choice, *world coordinates*
 - 2D image coordinates in a pixel based coordinate system, often with the origin at the top left corner and first coordinate down

69

Assuming that the world coordinate system we use is Euclidean, there is

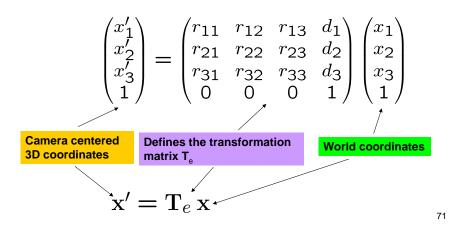
always a rotation and translation of the 3D coordinate system that align it with the camera centered system

The general camera matrix



The general camera matrix

• In homogeneous coordinates:



The general camera matrix

• The normalized image coordinates are then given as

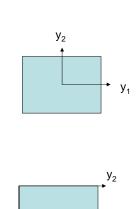
$$\mathbf{V}_{0} = \mathbf{C}_{0} \ \mathbf{x}' = \mathbf{C}_{0} \ \mathbf{T}_{e} \ \mathbf{x}$$

$$\mathbf{C}_{0} \ \mathbf{T}_{e} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & d_{1} \\ r_{21} & r_{22} & r_{23} & d_{2} \\ r_{31} & r_{32} & r_{33} & d_{3} \end{pmatrix}$$

$$\mathbf{C}_{0} \ \mathbf{T}_{e} = (\mathbf{R} \mid \mathbf{d})$$

Image coordinates

- Normalized image coordinates
 - f = 1
 - Origin at the image center
 - First coordinate right, second up
 - Same length unit as in 3D space
- Standard image coordinates
 - Arbitrary f > 0
 - Origin at the image top left
 - First coordinate down, second right
 - Pixel based length unit



73

The general camera matrix

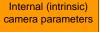
or vice versa

y₁

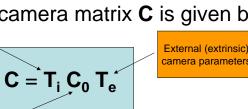
We can now summarize all this as

 $\mathbf{y} = \mathbf{T}_i \, \mathbf{y}_0 = \mathbf{T}_i \, \mathbf{C}_0 \, \mathbf{T}_e \, \mathbf{x} = \mathbf{C} \, \mathbf{x}$

• The general camera matrix **C** is given by



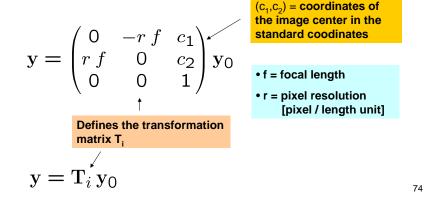
The normalized camera matrix



75

Image coordinates

• To transform from \mathbf{y}_0 to standard image coordinates **y**



The general camera matrix

- T_e depends on where the camera (camera center!) is positioned in 3D space and how it is oriented. May be variable or fixed depending on application
- T_i depends on the type of camera, and its setting such as zoom, resolution, etc. Typically fixed.
- Since **C** is the product of three matrices of rank 3, 3, and $4 \Rightarrow \mathbf{C}$ has rank 3
- To determine **C** is referred to as *camera calibration* (separate lecture)

Equivalent cameras

 Let C₁ and C₂ be the camera matrices of two pinhole cameras with the same camera center n

 $y_1 = C_1 x$ $C_1 n = 0$ $y_2 = C_2 x$ $C_2 n = 0$

 In this case: there is a homography mapping H from y₁ to y₂ defined by C₁ and C₂ such that

 $y_1 = H y_2$ $y_2 = H^{-1} y_1$ (why?)

• The images in the two cameras are identical except for a geometric transformation

- In practice the images crop different parts!

The orthographic camera

- An identical case appears when the 3D points are at a large distance from the camera
- Referred to as an orthographic camera
- Note: the affine/orthographic property is derived from propoerties of the 3D points, not of the camera

Affine camera

 In certain applications the 3D points have a distance d to the camera that does not vary much relative to the distance

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \frac{f}{x_3} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \approx \frac{f}{d} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

• In homogeneous coordinates:

			t t				
$\mathbf{y} = \left(\begin{array}{c} \\ \end{array} \right)$	$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix}$	≈~	$\begin{pmatrix} f \\ 0 \\ 0 \end{pmatrix}$	0 <i>f</i> 0	0 0 0	$\begin{pmatrix} 0\\0\\d \end{pmatrix}$	$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$

The affine camera matrix: it always has bottom row (0 0 0 d)

d determines the aracter of the curve

78

Conics (in 2D)

 (y₁, y₂) lies on a conic curve centered on the origin if
 A is 2 × 2 symmetric

$$\begin{pmatrix} y_1 & y_2 \end{pmatrix} \mathbf{A} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = 1$$

80

Conics (in 2D)

• In homogeneous coordinates the defining equation becomes

$$\mathbf{y}^T \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0}^T & -1 \end{pmatrix} \mathbf{y} = \mathbf{y}^T \mathbf{Q} \mathbf{y} = \mathbf{0}$$

\mathbf{Q} is 3 \times 3 symmetric

81

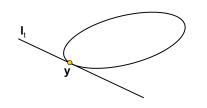
83

 Generalizes to conics at arbitrary positions by appropriate translations

Conics (in 2D)

Assuming that **y** lies on the conic

- We can interpret Q y as a line that must pass through y (why?)
- This line is in fact the tangent I_t of the conic at point y



82

Dual conics

- y^TQ y = 0 defines the points y that lie on a conic
- Follows: I^T Q⁻¹ I = 0 defines the lines that are tangent to the same conic (why?)
- Q⁻¹ is the *dual conic* relative to Q
- Q⁻¹I gives the tangent point of tanget line I

