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LECTURE 4A: CALIBRATED
AND ORIENTED EPG

¢ Extrinsic and intrinsic camera parameters

A

¢ Zhang's camera calibration

Al

¢ Calibrated epipolar geometry

¢ Oriented epipolar geometry

Mendonga and Cippolla, A Simple Technigue
for Self-Calibration, CVPR99
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THE PIN-HOLE CAMERA

\

%

Al

A brightly illuminated scene will be projected
onto a wall opposite of the pin-hole.

% The image is rotated 180"

(AN AT €) o, €0 Db oy pao ot D Dabd [ (€ e D €Y 3 S SO B b 3



Optical Centre

Al

¢ From similar triangles we get:

X Y

95 0
s i’
_1_ — O =

G GRS P
i I e )

oo
¥
_Z_




i) s 0 O X
eyt — (0 () X
e = 0 e/

.

¢ More generally, we write:

3 Jae .50 e | UFOK
gy =0 - ra ol
e S

f-focal length, s-skew, a-aspect ratio,
c-projection of optical centre



A

T e o] X
Ef o 0 fa Cy Y X ~ KX
1 g e 7
_/_/V
X K X Image Plane Image Grid
s Motivation:
2 (&) h
OFQ W
Optical Centre ¢FOV
X

S :
f-focal length, s-skew, a-aspect ratio,
c-projection of optical centre

I~ E F = =1 o



Al

s For a general position of the world coordinate

system (WCS) we have:

=~ @

B Lioalis by v

x~ K |ror 7199 123 1o 7
(31 Tao Tes da ey
—/_/ 5 4

R|t] :

X



A

2 For a general position of the world coordinate

system (WCS) we have:

i o @
B Lioalis by v
x~ K |ror 7199 123 1o 7
(31 Tao Tes da ey
it S Sy S e o G
R|t] :
X

A

K contains the wuitrinsic parameters

-
T

% [R | t] contain the extrinsic parameters

o=



A

 Metric points transformed to the camera’s
coordinate system are called normalised image
coordinales

% ~ [R|t] X

P

¢ In contrast to regular image coordinates
x ~ K [R|t] X x = Kx

NA

¢ K contains the wuitrinsic parameters

.

*[R | t] contain the extrinsic parameters

- I I= = = I | ==



.
[

 Zhang's camera calibration (A flexible new
technique for camera caltbration, PAMI 2000)

In OpenCV, and 1n Matlab toolbox

=

 Finds K from 3 or more photos of a planar
calibration target

[

2 OpenCV also finds

radial distorsion
(omitted here).

10



* We now 1magine a world coordinate system

fixed to the planar target

Optical Centre

O <X

11



* We now 1magine a world coordinate system
fixed to the planar target

N
O <X
N

Optical Centre

X Pl =0 - bl [ 2% hi1  hi2  his
=S i oo vl kYl — ok hor e ey Sl
: s s o tal el ‘h31  h3za hsz
s P e




Al

¢ If we estimate a homography between the
image and the model plane (lecture 3) we

know H
|5 Fes [hl h2 hg] — K[I’l I'o t]

3% We also know that

¥it,—0 and ©rr—rpr



Al

¢ If we estimate a homography between the
image and the model plane (lecture 3) we

know H
|5 Fes [hl h2 hg] — K[I’l I'o t]

3% We also know that

¥it,—0 and ©rr—rpr

—> hi K" TK'h, =0
hi K"K 'h; = h!K 7K 'h,

14



3% For a K of the form K =

A

e Ko - B

Cv L g

a262
v(voy—uofB) v

%It can be shown that (use e.g. Maple)

a262

0 0
o
VoY —uo A
a2
e | Y(voy—uofB) VQ
T 32 o232 32
(voy—uwoB)® | v§ | 1
52 04262 I 52 l d

55



2
KN\

=i
¢ It can be shown that (use e.g. Maple)
o~ L Sy ’UO’Y—’U,()ﬁ ]
o2 2 a2 a2
KK '=B=| —; Fgr + L
VoY —uo Y(wov—uoB)  we  (vovy—weB)® | w§ | 1
= 0426 &252 52 04262 ! 52 l g

A
7y

o v Ug
Fora Kof the form K= |0 8 g

Remember our constraints

h; Bh, =0 and h; Bh; — h!Bh, =0

16



CAMERA CALIBRATION

_bl b2 b4
% As B 1s symmetric B= |0 b3 b5
_b4 b5 b6_

O Y23 25 O [ €% P o pho o B0 s [ Qs e €0 34 Sp S 550 ) |



2

A AS B iS symmetric | B bQ b3 b5

#If we now define b = [51 bo b3 b4 bs bG}T

NA

3¢ The constraints can be written as

Sl i
(V11 s V22)T

vi;j = [hithj1, hithja 4+ highj1, hiohja, hishii 4+ hiihjis, hishio 4+ highjs, hiSth]T



A
N\

A
7§

A
7y

FEach view of the plane gives us two rows 1n
the system:

Vb =0

As b has 6 unknowns, we need 3 views of the
plane.

Two views can also work if we require v =0

19



% Once b has been estimated, we can extract the
parameters in K according to

vo = (babs — bibs)/(b1bs — b3)
A = bg — (b3 4 vo(babs — bibs) /by

oy = )\/bl
B = \/Ab1/(bibs — b3)
v = —bya® /A

Uy = Yvoo — bao® /A

20



% Once b has been estimated, we can extract the
parameters in K according to

vo = (babs — bibs)/(b1bs — b3)
A = bg — (b3 4 vo(babs — bibs) /by

oy = )\/bl
B =/ Abu/(bibs — 13)
v = —bya® /A

Uy = Yvoo — bao® /A

A

¢ The book instead suggests Cholesky factorisation

i G FFEF P o Al



Al

¢ Once K 1s computed we can also find the
extrinsic camera parameters R,t for each
1mage:

'y = )\K_lhl o = )\K_lhz o= EyiocdH

R=[r; ro r3s] t=XK “‘hs

(A= 1/IK "' hy|| = 1/][K"hy|)



Al

¢ Once K 1s computed we can also find the
extrinsic camera parameters R,t for each
1mage:

'y = )\K_lhl o = )\K_lhz o= EyiocdH
R=[r; rs r3] t=)MK 'h;

 Finally, K, R;, t; are refined using ML

(minmimising the cost function)

arg minz Z xR Xj)H2

i=1 j=1



A

S

¢ So what about the initial homographies?
H— [I‘l I' t]

¢ Assign each point a WCS value X = [z y 0

(e 2-0) 1 .€ FErR-IEFIV =)y oo Seg =g

24



*So what about the imitial homographies?

¢ Assign each point a WCS value X =[z y 0

H— K[I‘l I'o t]
]T

Do we need to know which point 1s the upper

left one on the checker-board? Why not?

z 0 1 G TN o ot o R 2 s e



-
[

¢ Can we use any combination images of the
calibration plane?

el

(e z 0 1 G F Er-EFIFV s 26




Al

¢ Can we use any combination images of the

calibration plane?
T

2* The constraints used: rirs =0 and rir; =r5rs

have to be linearly independent.

-
—
~

* —> Planes must not be parallel!



CALIBRATED EPIPOLAR
GEOMETRY

2 Rotational homography Xe

)\Xl — KX
)\XQ — KRX

‘ Optical Centre

Image plane 2

Image plane 1

i) 2GS G = E a6 I L EN 28



A

¢ Rotational homography Xe

)\Xl — KX
)\XQ — KRX

‘ Optical Centre

Image plane 2

Image plane 1

)\XQ — KRK_le

H = KRK™' Can be efficiently computed
using the Procrustes algorithm (le 7)

- £ S BN b [ o 29



Al

s Recall the epipolar constraint  x{ Fxy = 0

camera 1

epipolar plané_\ X
( ) camera 2

baseline

“~epipolar lines *




Al

s Recall the epipolar constraint  x{ Fxy = 0

#¢...and the normalised 1mage coordinates

x = Kx

* We can instead express the epipolar
constraint in normalised coordinates

/\T A Vet AN\
X K{FKQXQ =0 or XlTEXQ =)

Al

¢ The matrix E 1s called the essential matrix.
It has some interesting properties...



Al

Po:

== [812] XP1P3_

s NOW, lf P2 — K2 [I

7 We get P; —

_K2_1_

OT

0]

3¢ In lecture 2 we saw that for cameras P17 and

ejs =i
and P1 — K1 [R|t]

and

F = [K;t], KiRK;"

32



\V/

S Using the cross-product-commutator rule:

A4.3 e A=l
(A4.5)  [b], A =det(A)AT [A"'b]_
#on F =[K;t] K;RK,'
“¢...we may express I as either of
PE-K ‘L RK, F-K "RIR ¢ Ky

F=K;, Rlt], K,



\I2
\)

 This gives us the essential matrix expressions:

1

E=[t], R=R[R't]

*E has only 5 dof (3 from R, 2 from t)
recall that F has 7

-

¢ A necessary and sufficient condition on E i1s

that 1t has the singular values [a,a,0]
(see 9.6.1 1n the book for proot)

t { > [; I- I i} i { - i ]



 This gives us the essential matrix expressions:

E=[t], R=R[R't]

A

* We can extract R and t (up to scale) from E
if we also make use of one point
correspondence (a 3D point known to be in

front of both cameras). See 9.6.2 in the book.



A

% The regular epipolar constraint xi Fxy = 0
ignores the knowledge that points are in front
of the camera.

camera 1

epipolar plané—\ X
( ) camera 2

baseline

epipolar lines ¥

- £ S BN b [ o 36



A

¢ The ortented eptpolar constramnt properly
distinguishes points in front and behind of the
camera hel ixi —Fx, . e R

baseline

epipolar lines ¥




Al

% The orcented epipolar constraint compares
oriented lines Ae; X x; and Fx-

.

% S1gn of F needs to be determined

camera 1

epipolar plang\ (X)

baseline

epipolar lines ¥

38



N

 The oreented epipolar constraint compares
oriented lines \e; X x; and Fx»

N

2 Sign of F needs to be determined

% A point A |1 T2 1]T 1s said to be 1n front of
the camera if )\ > 0 and behind the camera
otherwise.

Al

¢ Use a trusted correspondence (e.g. one used
to estimate F) to determine sign

= - = = : { - i ] 59



Al

% The orcented epipolar constraint compares
oriented lines Ae; X x; and Fx-

Al

1. Ensure correct sign of F

A

¢ 2. Compare the lines by checking the sign of

the scalar product of the line normals
I, = A[cos¢y sing; — pl:T
T

lo = X |cos g2 sings — pa
(elements 1 and 2 only) Why?

PEr = I= | | F O F O R |

40



A

* What 1f the points are noisy?

A

/l — A[cos o singd — p|

A

¢ Small amounts of noise 1n x;1 or x2 may cause
p In Ae; X X1 or Fx, to change sign!

[; - = = ] { . i ] 41



\\/
x« Usage:

A
7/

A

=

¢ The oriented epipolar constraint can be used

to quickly reject a hypothesized F inside a
RANSAC loop.

Al

% See: Chum, Werner and Matas, Epipolar

Geometry Fotimation via RANSAC benefits from
the Ortented Eptpolar Constraint, ICPR04



DISCUSSION

¢ Discussion of the paper:
Mendonca and Cippolla, A Simple Technigue
for Self-Calibration, CVPR99

(T oAV BT €Y [5. € )0 DI o pad ot hG: Cabd [ MR D ey D3 S S B f
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% A selection from chapters 15 and 16
(see email).

¢ David Nistér, An Efficient Solution to the Five-

Point Relative Pose Problem, PAMI04
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